M1 - Lifts (1)

(1,)	A lift, of mass 600 kg, travels downward non-stop from the top of a buildinground floor. It starts from rest and accelerates downwards with constant according to 4 ms ⁻² , then moves at constant speed before decelerating to rest.	
	(a) Calculate the tension in the lift cable when the lift is accelerating.	[3]
	(b) Find the tension in the lift cable when the lift is moving at a constant s	speed.
2.)	A child of mass 30 kg stands in a lift. Find the reaction of the floor of the lift on the lift is	child when the
	(a) moving up with acceleration $1.5 \mathrm{ms}^{-2}$,	[3]
	(b) moving down with acceleration $0.8 \mathrm{ms}^{-2}$,	[2]
	(c) moving down at a constant speed of $5 \mathrm{ms}^{-1}$.	[1]
3.	A child, of mass 30 kg, is standing in a lift, which is of mass 720 kg. When the lift upwards at a constant rate of $a \mathrm{ms}^{-2}$, the tension in the lift cable is 9000 N.	is accelerating
-	(b) Modelling the child as a particle, find the reaction between the child and the f	[3] loor of the lift.
4	A lift starts from rest from the ground floor and accelerates upwards at 2 ms ⁻² unt speed of 6 ms ⁻¹ . It then moves with a constant speed of 6 ms ⁻¹ before finally decelerate coming to rest at the top floor. The lift has a mass of 750 kg.	loor of the lift. [3]
4	A lift starts from rest from the ground floor and accelerates upwards at 2 ms ⁻² unt speed of 6 ms ⁻¹ . It then moves with a constant speed of 6 ms ⁻¹ before finally decelerate coming to rest at the top floor. The lift has a mass of 750 kg. Find the tension in the lift cable	loor of the lift. [3]
4	A lift starts from rest from the ground floor and accelerates upwards at 2 ms ⁻² unterspeed of 6 ms ⁻¹ . It then moves with a constant speed of 6 ms ⁻¹ before finally decelerate coming to rest at the top floor. The lift has a mass of 750 kg. Find the tension in the lift cable (a) during acceleration,	loor of the lift. [3]
4	A lift starts from rest from the ground floor and accelerates upwards at 2 ms ⁻² unt speed of 6 ms ⁻¹ . It then moves with a constant speed of 6 ms ⁻¹ before finally decelerate coming to rest at the top floor. The lift has a mass of 750 kg. Find the tension in the lift cable	loor of the lift. [3] il it reaches a ting at 5 ms ⁻² ,
(4) (5)	A lift starts from rest from the ground floor and accelerates upwards at 2 ms ⁻² unterspeed of 6 ms ⁻¹ . It then moves with a constant speed of 6 ms ⁻¹ before finally decelerate coming to rest at the top floor. The lift has a mass of 750 kg. Find the tension in the lift cable (a) during acceleration,	il it reaches a ting at 5 ms ⁻² , [3] [1] 0.2 ms ⁻² until it formly to rest in

M1 - Lifts (2)

	-		(1)
(6)1.	A lift, starting from rest, descends with a uniform acceleration of 3 ms ⁻² until 9 ms ⁻¹ . It then travels at a constant speed of 9 ms ⁻¹ for a short time and finally with a uniform retardation of 2 ms ⁻² . An object, of mass 6 kg, is on the floor the magnitude of the reaction of the floor on the object during each of the motion.	, it is brought to rest
F	3.	When a lift is descending with acceleration $a \text{ ms}^{-2}$, the tension in the lift cal total mass of the lift and its contents is 1250 kg.	ble is 11625 N. The
		(a) Find the value of a.	[3]
		(b) A crate on the floor of the lift has a mass of 200 kg. Find the magnitude the floor on the crate.	de of the reaction of [2]
8	3.	The mass of a lift is 430 kg. When a man, of mass $70 \mathrm{kg}$, is standing in the lift the cable is $4800 \mathrm{N}$, the lift is descending with acceleration $a \mathrm{ms}^{-2}$.	t and the tension in
		(a) Find the value of a .	[3]
		(b) Determine the reaction of the floor of the lift on the man.	[3]
9)	4.	A parcel is on the floor of a lift which is ascending with acceleration 0.8 ms^{-2} . The parcel is 20 kg and the mass of the lift is 700 kg .	ne mass of the
		(a) Calculate the tension in the lift cable.	[3]
		(b) Find the reaction of the floor of the lift on the parcel.	[3]
			×
)3.	The s	mass of a lift is 5600 kg. The lift starts from rest and descends with uniform actually treaches a speed of $V \text{ms}^{-1}$. The tension in the lift cable is 50400 N.	ecceleration for
	(a)	Show that the magnitude of the acceleration of the lift is 0.8 ms ⁻² .	[2]
	(b)	Find the value of V.	[2]
	The l	ift maintains this constant speed of $V \text{ ms}^{-1}$ for 25 s before decelerating uniform time for descent is 40 s.	
	(c)	Draw a sketch of the velocity-time graph of the motion.	[3]
	(d)	Calculate the total distance that the lift descends.	[3]
			~ · · · · ·
	(e)	Find the maximum tension in the lift cable during the motion.	[3]