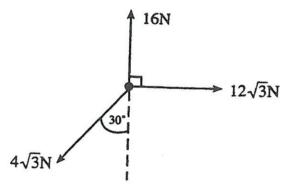
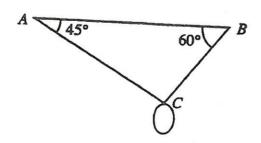

M1 - Resolving Forces (1)


The diagram shows four coplanar forces of magnitude SN, RN, 60 N and 80 N acting at a point O in the directions shown.

Given that the forces are in equilibrium, find the values of R and S.

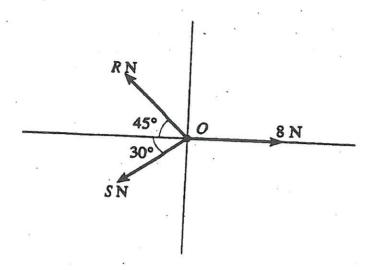
[6]


A particle A is moving on a smooth horizontal floor under the resultant action of three horizontal forces of magnitudes 16 N, $12\sqrt{3}$ N and $4\sqrt{3}$ N acting in directions shown in the diagram below.

(a) Show that the resultant of the three forces has magnitude 20 N and find the angle it makes with the force of magnitude 16 N. [7]

The diagram shows a body of mass 6 kg suspended in equilibrium by two light inextensible strings AC and BC, attached to two fixed points A and B on the same horizontal level. The strings AC and BC are inclined at angles 45° and 60° to the horizontal respectively.

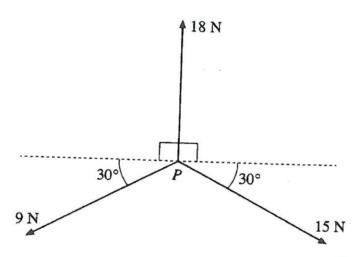
Find the tension in the string AC and the tension in the string BC.


NC 90.4

[7]

M1 - Resolving Forces (2)

The diagram shows a particle lying in equilibrium at the origin O under the action of three horizontal forces of magnitudes 8 N, S N and R N.



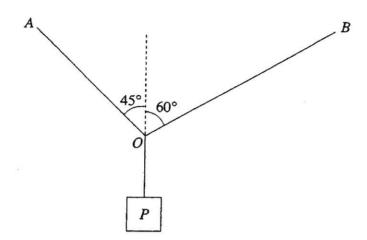
Find the values of R and S, giving your answers correct to two decimal places.

[8]

(5)

8. Three horizontal forces, with magnitudes 18 N, 15 N and 9 N, act at a point P in directions as shown in the diagram.

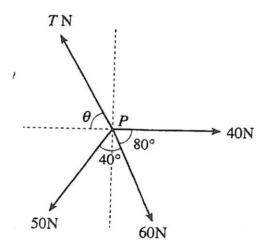
Calculate the magnitude and direction of the resultant of the forces.


.

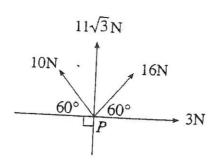
[8]

40.9

M1 - Resolving Forces (3)

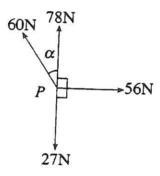

2. The diagram shows a body P, of mass 30 kg, suspended in equilibrium by means of light inextensible strings OA, OB and OP. The strings OA and OB are inclined at 45° and 60° to the vertical respectively.

- (a) Find, in Newtons, the tension in the string OP. 294 ~ [1]
- (b) Draw a diagram showing the forces acting at the point O. [1]
- (c) Calculate the forces in the strings OA and OB. OA: 263.6, OB: 215.1 [8]


3. The diagram shows four horizontal forces acting at a point P.

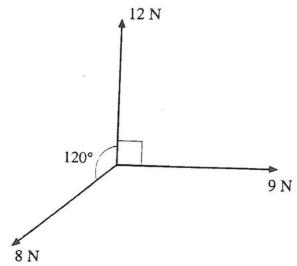
Given that the forces are in equilibrium, calculate the value of T and the size of the angle θ . Give each of your answers correct to one decimal place.

[9]


- (8)
- 6. Four coplanar forces of magnitudes 10 N, $11\sqrt{3}$ N, 16 N and 3 N act at the point P in the directions as shown in the diagram.

Resolve the forces in two perpendicular directions and deduce the magnitude and direction of the resultant force.

[10]


- 9
- 7. Four horizontal coplanar forces have magnitudes 78 N, 56 N, 27 N, 60 N and act at the point P in the directions shown on the diagram, where $\tan \alpha = \frac{3}{4}$.

Find the magnitude and direction of the resultant.

[8]

- (0
- Three horizontal forces of magnitudes 8N, 12N and 9N act at a point in directions as shown in the diagram.

Find the magnitude of the resultant of these three forces and the angle between the resultant and the 9N force. $8.3 \, \text{N}$, 75.5