Unit 3 – Proof
In mathematics it is tempting on the basis of checking a number of special cases to deduce that a general conjecture is true.
Consider the function 1, where n is a positive integer.
f(1) = 5
f(2) = 7
f(3) = 13
f(4) = 29
f(5) = 61
all of these numbers are primes.
A possible conjecture would therefore be that when n is an integer,  is a prime.
However, although this conjecture is true for n = 1, 2, 3, 4, 5 it may not be true for all integer values.
Indeed f(6) = 115, which is not prime.
A correct proof is the only way to convince another of the truth of a conjecture.  There are a number of methods of proof.
In A level, you will have met examples of direct proof such as the sums of arithmetic and geometric series.  Other methods of proof include mathematical induction and disproof by counter-example (which is what f(6) achieves above).  In Unit 3, we focus on proof by contradiction.
Proof by Contradiction
Proof is concerned with the demonstration of the truth of an assertion.  The essence of proof by contradiction is to assume the assertion is false and show that the assumption leads to a contradiction.
Eg1	Prove that if n2 is even, then n is even
Eg2	Prove that  is irrational
Eg3	Use a proof by contradiction to show that if a and b are real numbers, then  
Eg4	Prove by contradiction that if x is real and x > 0 then  
Eg5	Prove that there is an infinite amount of prime numbers
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10. Prove by contradiction the following proposition
When v i real and positive,
a+2>12
x
The first line of the proof is given below
Assume that there is a positive and real value of x such that

i <n
x
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10. Complete the following proof by contradiction to show that 5 is irrational.

Assume that 3 is rational. Then[3 may be written in the form & . where a, b are

integers having no common factors.
& =5

a has a facior 5.
a has a factor 5 so that a = 5k, where k is an integer
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10. Prove by contradiction the following proposition.
When x s real,
(Gy=3P+1> Gr- 17
The first line of the proof is given below.

Assume that there is a real value of x such that

+1<(3x-1)2
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