

A uniform ladder $A B$, of mass m and length $2 a$, has one end A on rough horizontal ground. The coefficient of friction between the ladder and the ground is 0.5 . The other end B of the ladder rests against a smooth vertical wall. The ladder rests in equilibrium in a vertical plane perpendicular to the wall, and makes an angle of 30° with the wall. A man of mass 5 m stands on the ladder which remains in equilibrium. The ladder is modelled as a uniform rod and the man as a particle. The greatest possible distance of the man from A is $k a$.

Find the value of k.

Figure 1

A uniform ladder $A B$, of mass m and length $2 a$, has one end A on rough horizontal ground. The other end B rests against a smooth vertical wall. The ladder is in a vertical plane perpendicular to the wall. The ladder makes an angle α with the horizontal, where $\tan \alpha=\frac{4}{3}$. A child of mass $2 m$ stands on the ladder at C where $A C=\frac{1}{2} a$, as shown in Fig. 1. The ladder and the child are in equilibrium.

By modelling the ladder as a rod and the child as a particle, calculate the least possible value of the coefficient of friction between the ladder and the ground.

A uniform steel girder $A B$, of mass 40 kg and length 3 m , is freely hinged at A to a vertical wall. The girder is supported in a horizontal position by a steel cable attached to the girder at B. The other end of the cable is attached to the point C vertically above A on the wall, with $\angle A B C=\alpha$, where $\tan \alpha=\frac{3}{4}$. A load of mass 60 kg is suspended by another cable from the girder at the point D, where $A D=2 \mathrm{~m}$, as shown in Fig. 2. The girder remains horizontal and in equilibrium. The girder is modelled as a rod, and the cables as light inextensible strings.
(a) Show that the tension in the cable $B C$ is 980 N .
(b) Find the magnitude of the reaction on the girder at A.
(c) Explain how you have used the modelling assumption that the cable at D is light.

Figure 2 shows a horizontal uniform pole $A B$, of weight W and length $2 a$. The end A of the pole rests against a rough vertical wall. One end of a light inextensible string $B D$ is attached to the pole at B and the other end is attached to the wall at D. A particle of weight $2 W$ is attached to the pole at C, where $B C=x$. The pole is in equilibrium in a vertical plane perpendicular to the wall. The string $B D$ is inclined at an angle θ to the horizontal, where $\sin \theta=\frac{3}{5}$. The pole is modelled as a uniform rod.
(a) Show that the tension in $B D$ is $\frac{5(5 a-2 x)}{6 a} W$.

The vertical component of the force exerted by the wall on the pole is $\frac{7}{6} W$. Find
(b) x in terms of a,
(c) the horizontal component, in terms of W, of the force exerted by the wall on the pole.

A straight $\log A B$ has weight W and length $2 a$. A cable is attached to one end B of the log. The cable lifts the end B off the ground. The end A remains in contact with the ground, which is rough and horizontal. The \log is in limiting equilibrium. The log makes an angle α to the horizontal, where $\tan \alpha=\frac{5}{12}$. The cable makes an angle β to the horizontal, as shown in Fig. 3. The coefficient of friction between the \log and the ground is 0.6 . The \log is modelled as a uniform rod and the cable as light.
(a) Show that the normal reaction on the \log at A is $\frac{2}{5} W$.
(b) Find the value of β.

The tension in the cable is $k W$.
(r) Find the value of k.

Numerica Answens
(1) $K=1.88$ * READ question very carefully regarding guein angle * (I dichit!!)
(2) $\mu=\frac{1}{4}$
(3) (a) 980 N (giver)
(b) $R_{A}=876.5 \mathrm{~N}$
(4)(b) $x=\frac{2 a}{3}$
(c) $R_{x}=\frac{22 w}{9}$
(5) (b) 68.2°
(c) $k=0.65$

