GCSE MARKING SCHEME

AUTUMN 2016

MATHEMATICS (NEW)
UNIT 2 - HIGHER TIER
3300U60-1

INTRODUCTION

This marking scheme was used by WJEC for the 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

	GCSE MATHEMATICS Unit 2 : Higher Tier Autumn 2016		Mark

\begin{tabular}{|c|c|c|c|}
\hline GCSE MATHEMATICS Unit 2 : Higher Tier Autumn 2016 \& \checkmark \& Mark \& Comment

\hline 8.
$$
\begin{aligned}
\mathrm{BDC} & =28\left({ }^{\circ}\right) \\
\mathrm{BCD} & =90\left({ }^{\circ}\right)
\end{aligned}
$$
$$
\mathrm{BD}=\frac{4 \cdot 7}{\operatorname{Sin} 28}
$$
$$
B D=10(\cdot \ldots)(\mathrm{cm})
$$ \& $$
\begin{aligned}
& \checkmark \\
& \checkmark
\end{aligned}
$$
$$
\checkmark v
$$ \& B1
B1

M2

A1 \& | Angles may be shown on the diagram. |
| :--- |
| Allow D = 28 . |
| May be implied in later work. (Allow this B1 for any use of a right-angle triangle trigonometric relationship for triangle BCD) |
| This implies previous B mark. FT 'their BDC'. |
| M1 for $\frac{4 \cdot 7}{B D}=\sin 28$. $\begin{aligned} & \text { Alternative method } \\ & \begin{array}{ll} C O B=56\left({ }^{\circ}\right) & B 1 \\ O B=2 \cdot 35 \\ \sin 28 & M 2 \\ \left(M 1 \text { for } \frac{2.35}{O B}=\sin 28\right) & \\ & O B=5(\cdot \ldots)(\mathrm{cm}) \\ & A 1 \\ & B D=10(\cdots)(\mathrm{cm}) \\ & A 1 \end{array} \end{aligned}$ |

\hline Organisation and Communication \& \checkmark \& OC1 \& | For OC1, candidates will be expected to: |
| :--- |
| - present their response in a structured way |
| - explain to the reader what they are doing at each step of their response |
| - lay out their explanation and working in a way that is clear and logical |

\hline Accuracy of writing \& \checkmark \& W1 \& | For W1, candidates will be expected to: |
| :--- |
| - show all their working |
| - make few, if any, errors in spelling, punctuation and grammar |
| - use correct mathematical form in their working |
| use appropriate terminology, units, etc. |

\hline $$
\begin{array}{lll}
\text { 9.(a) } & (x-6)(x+4) \\
& (x=) 6 \text { AND } \quad(x=)-4
\end{array}
$$ \& \& \[

$$
\begin{aligned}
& \hline \text { B2 } \\
& \text { B1 }
\end{aligned}
$$

\] \& | B1 for ($x \ldots 6$) $(x \ldots 4)$. |
| :--- |
| Strict F.T. from their brackets. |
| Allow the following. |
| $\begin{array}{cccc}\mathrm{B} 2 \text { for } & \mathrm{x}-6(=0) & \text { AND } & \mathrm{x}+4(=0) \\ & (\mathrm{x}=) 6 & \text { (B1) } \\ & \text { AND } & (\mathrm{x}=)-4 & \text { (B1) }\end{array}$ |
| B 1 for $\mathrm{x}+6(=0)$ AND $\mathrm{x}-4(=0) \quad$ (B0) |
| $(x=)-6 \quad$ AND $\quad(x=) 4$ |
| B1 if only $(x=) 6$ AND $(x=)-4$ seen (B1) |

\hline 9.(b) $\frac{12 x-9+7 x+1}{(6)}=\frac{87}{(6)}$

\[
19 x=95 \quad x=5

\] \& | $\checkmark \checkmark$ |
| :--- |
| \checkmark \checkmark | \& | B2 |
| :--- |
| B1 |
| B1 | \& | F.T. until $2^{\text {nd }}$ error. B1 for 1 error. |
| :--- |
| Subsequent work may show use of common denominator in order to award the B2. |
| BO for 95/19. |
| If a F.T. answer is not a whole number then allow answer in form ' a / b '. Mark final answer. Allow a correct embedded answer. |

\hline
\end{tabular}

GCSE MATHEMATICS Unit 2 : Higher Tier Autumn 2016	\checkmark	Mark	\quad Comment

GCSE MATHEMATICS Unit 2 : Higher Tier Autumn 2016	\checkmark	Mark	Comment
15. TRUE FALSE TRUE \qquad		B2	B1 for any 3 correct responses.
	$\begin{aligned} & \checkmark \\ & \\ & \checkmark \\ & \\ & \checkmark \end{aligned}$	M1 A1 A1	CAO. '= 0 ' may be implied in further working. FT 'their derived quadratic equation' set to zero and of equivalent level of difficulty (a, b and c are nonzero). Allow one slip in substitution, but must be correct formula. If one slip seen or a positive b used award A0. CAO
17. Linear scale factor $\begin{array}{rccc} =\sqrt{\frac{700}{140}}(=\sqrt{5}) & \text { OR } & \sqrt{\frac{140}{700}}\left(=\frac{\sqrt{5}}{5}\right) \\ 83 \times \sqrt{5} & \text { OR } & 83 \div \frac{\sqrt{5}}{5} \\ & =185(.59 \ldots \mathrm{~cm}) \text { or } 83 \sqrt{5} \end{array}$		B1 M1 A1	Or equivalent. FT their linear scale factor.
18. (a) Sight of (360/18=) 20° $\begin{aligned} & x^{2}=10^{2}+7^{2}-2 \times 10 \times 7 \times \cos 20^{\circ} \\ & x=4.17(6 \ldots) \text { or } \mathrm{x}=4.2 \text { or } \mathrm{x}=4.18 \\ & \text { Perimeter }=75(.17 \ldots \mathrm{~cm}) \end{aligned}$	$\begin{aligned} & v \\ & v \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \\ & \text { M1 } \\ & \text { A2 } \\ & \text { B1 } \end{aligned}$	May be seen in 18(a) or 18(b). FT 'their 20° A1 for $x^{2}=17.4(43 \ldots)$ FT 18x provided B1 and M1 awarded
18. (b) $\begin{aligned} & \begin{array}{l} 1 / 2 \times 10 \times 7 \times \sin 20^{\circ} \\ \quad=11.97\left(07 \ldots \mathrm{~cm}^{2}\right) \text { OR } 12\left(\mathrm{~cm}^{2}\right) \\ \text { (Area of star) } \quad=215\left(.47 \ldots \mathrm{~cm}^{2}\right) \end{array} \end{aligned}$		$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	FT their angle from (a) FT $18 \times$ 'their 11.97...' Alternative method (Area of a kite) Calculating shorter diagonal of the kite by using either: $2 \times 7 \times \sin 20^{\circ}$ or (cosine rule) $\sqrt{ }\left(7^{2}+7^{2}-2 \times 7 \times 7 \times \cos 40^{\circ}\right)$ Area of the kite: $=4.78\left(828 \ldots \mathrm{~cm}^{2}\right)$ $1 / 2 \times 10 \times 4.78$ ($828 \ldots$...) FT 'their 4.78...', provided there is evidence the shorter diagonal has been calculated correctly, e.g. using the 2 methods above. $=23.94(141 \ldots . .)$ (Area of star) $=215\left(.47 \ldots . \mathrm{cm}^{2}\right)$

