$$
\text { November Ob Paper } 2 \text { - Solution o }
$$

1. Hassan, Elin and Richard buy 19,25 and 16 tickets respectively in a raffle. They agree to share any prize money they win in the ratio of the number of tickets they have bought. How much does each one get when they win $£ 540$?

$$
19+25+16=60 \quad 540 \div 60=9
$$

Hans gets $19 \times 9=t 171$ Chi get $25 \times 9=t 225$ Ruched get $16 \times 9=t 144$
2. Solve the following equation.

$$
\begin{gathered}
2 x-15=20-8 x-45-2 x) \\
2 x+8 x=20+15 \\
10 x=35 \\
z=\frac{35}{20}=3.5
\end{gathered}
$$

$$
\begin{aligned}
& 100 \times 6=360 \\
& 100 \times 10=3000 \\
& 140 \times 114=15960 \\
& 180 \times 42=7560+ \\
& 220 \times 18=3960 \\
& \text { Mean }=30840 \div 210=146.9 \mathrm{~cm}
\end{aligned}
$$

4. A ladder which is 7.8 m long is resting against a vertical wall at W. The foot of the ladder is at A, which is at a horizontal distance of 4.6 m from the base of the vertical wall at B. Calculate the length of $W B$.

$$
\begin{aligned}
& W B^{2}=7.8^{2}-4.6^{2} \\
& W B^{2}=39.68 \\
& W B=\sqrt{39.68}=6.3 \mathrm{M}
\end{aligned}
$$

[3]
5. Find, to the nearest penny, the compound interest when $£ 500$ is invested for 3 years at 4% per annum.
About in accout $=(1.04)^{3} \times 500=t 562.43$
\therefore. interest carnal =f62.43
\qquad
\qquad
\qquad
\qquad
6. A cuboid of copper measures 5.3 cm by 6.7 cm by 13.4 cm . The density of copper is $8.96 \mathrm{~g} / \mathrm{cm}^{3}$ Calculate the mass, in kg , of the cuboid. Vo lure $=5.3 \times 6.7 \times 13.4=475.834 \mathrm{~cm}^{3}$

$$
\begin{aligned}
& \text { Density }=\text { Mars } \\
& \begin{aligned}
\text { Mass } & =\text { Dainty } \times V \text { bl un } \\
& =8.96 \times 475.834 \\
& =4263.5 \mathrm{~g} \\
& =4.26 \mathrm{~kg}
\end{aligned}
\end{aligned}
$$

7. An electricity bill came to $£ 103.95$ inclusive of V.A.T. at 5%. What was the cost of the electricity before V.A.T. was added?

$$
\begin{aligned}
1.05 \times x & =103.95 \\
x & =\frac{103.95}{1.05}=499
\end{aligned}
$$

8. A solution to the equation

$$
x^{3}-7 x+1=0
$$

lies between 2.5 and 2.6 .
Use the method of trial and improvement to find this solution correct to 2 decimal places.

$$
\begin{array}{lll}
x=2.55 & -0.269 & \text { too small } \\
x=2.57 & -0.054 & \text { too bu } \\
x=2.58 & +0.11
\end{array}
$$

\therefore solution lies between $x=2.57+x=2.58$
tort $x=2.575 \quad 0.0488$ too by

$$
x>-\frac{6}{3}
$$ $\because x=2.57$ t. $2 d p$.

$$
n>-2
$$

\qquad
\qquad
\qquad
9. (a) Write each of the following numbers in standard form.
(i)

$$
0.0083=8.3 \times 10^{-3}
$$

(ii)

$$
\underset{7500000000}{750000000}=7.5 \times 10^{9}
$$

(b) Find, in standard form, the value of

$$
\left(2.66 \times 10^{9}\right) \div\left(7.6 \times 10^{-3}\right)
$$

3.5×10^{11}
10. (a) Rearrange the inequality $3-3 n<9-5 n$ into the form $n<$ some number.

$$
\begin{gathered}
5 n-3 n<9-3 \\
2 n<6 \\
n<3
\end{gathered}
$$

(b) Given that n also satisfies the inequality $3 n>-6$, write down all the integer values of n that satisfy both inequalities.
\qquad

$$
3 n>-6
$$

$\because-2<n<3$

$$
\begin{equation*}
\text { So } \cap \text { ca be }-1,0,1,2 \tag{2}
\end{equation*}
$$

11. Solve the following equation.

$$
\begin{gathered}
x 6 \quad \frac{}{\frac{4 x+3}{6}+\frac{x}{3}=2} \\
6 \frac{2(4 x+3}{6}+\frac{6 x x}{6}=6 x 2 \\
4 x+3+2 x=12 \\
6 x=12-3 \\
6 x=9 \\
x=\frac{9}{6}=\frac{3}{2}
\end{gathered}
$$

12. (a) In the diagram $P Q$ represents a vertical pole. When the sun is at an angle of elevation of 36° the pole casts a shadow, $P R$, of length 15.8 m on horizontal ground. Calculate the height of
the pole $P Q$.

Diagram is not drawn to scale.

$$
\begin{aligned}
& P p=\tan 36 \times a d y \\
& P Q=\tan 36 \times 15.8 \\
& P Q=11.5 \mathrm{M}
\end{aligned}
$$

13. A bag contains only black balls and white balls. The probability that a ball drawn at random from the bag is coloured white is $\frac{1}{4}$.

Two balls are drawn from the bag in the following way. The first ball is drawn at random from the bag and its colour is noted. This ball is then replaced in the bag and a second ball is drawn at random from the bag and its colour is also noted.
(a) Complete the following tree diagram to show all the possible outcomes and their probabilities when two balls are drawn from the bag in this way.

(b) Calculate the probability that the 2 balls are the same colour. $P(2$ the same $)=P(B B)$ or $P(\omega \omega)$

$$
\begin{align*}
& =\left(\frac{3}{4} \times \frac{3}{4}\right)+\left(\frac{1}{4} \times \frac{1}{4}\right) \\
& =\frac{9}{16}+\frac{1}{16}=\frac{10}{16} \tag{2}
\end{align*}
$$

14.

Diagram not drawn to scale.

Four points A, B, C and D lie on the circumference of the circle centre O.
The tangent $T P$ touches the circle at C.
Given that $\widehat{D C P}=56^{\circ}$ and $\widehat{D A B}=112^{\circ}$, find each of the following angles, giving reasons for your answers.
is) mick 56° (Allemande Segue Theme)

$\therefore B_{00}=2 \times 68=136^{\circ}$ (angle at canters
15. Use the formula method to solve the equation $2 x^{2}+19 x+13=0$, giving your solutions correct to two decimal places.

$$
\begin{aligned}
& a=2 \quad b=19 \quad c=13 \\
& x=\frac{-19 \pm \sqrt{19^{2}-4 x^{2} \times 13}}{2 x^{2}} \\
& x=\frac{-19 \pm \sqrt{361-104}}{\frac{4}{4}} \\
& x=\frac{-19 \pm \sqrt{257}}{4}
\end{aligned}
$$

lite $x=\frac{-19+\sqrt{257}}{4}=-0.74$ or $x=\frac{-19-\sqrt{257}}{4}=-8.76$
16. Make e the subject of the following formula.

$$
\begin{aligned}
& f(3-2 e)=e(7+g) \\
& 3 f-2 e f=7 e+g e \\
& 3 f=7 e+g e+2 e f \\
& 3 f=e(7+g+f) \\
& e=\frac{3 f}{3-2 e} \\
& (7+g+f)
\end{aligned}
$$

\qquad
\qquad
18. (a) (i) Factorise $36 x^{2}-49 y^{2}$.

$$
\begin{aligned}
& \text { 17. Expres } 0.546 \text { as a fraction. } \\
& x=0.546464646 \ldots \\
& 100 x=5.4646464 \ldots
\end{aligned}
$$

$$
1000 x=546 \cdot 4646464 \cdots \text { (2) }
$$

(2) - (1) $990 x=541$

$$
x=\frac{541}{990}
$$

19. The graph of $y=x^{3}-7 x^{2}-42 x+216$, for values of x between $x=-8$ and $x=10$, has been drawn below.

BLANK PAGE

(a) Use the graph to solve $x^{3}-7 x^{2}-42 x+216=0$.
where graph cross s x axis:

$$
x=-6, x=4 \text { or } x=9
$$

(b) By drawing an appropriate line on the graph, solve the equation $x^{3}-7 x^{2}-42 x+116=0$.

Writs as $x^{3}-7 x^{2}-42 x+216-100=0$

$$
x^{3}-7 x^{2}-42 x+216=100
$$

So drum hi $y=100$ dread off x coors s where

(c) Using the graph, estimate the gradient of the curve $y=x^{2}-7 x^{2}-42 x+216$ when $x=-5$.
gradient of tangent $=\frac{250}{2}=125$
(d) Use the trapezium rule with 3 strips to estimate the area of the region enclosed by the curve

Area fol TRApejwin (i) $=\frac{1}{2}(0+220) \times 2=220$
Area fT rapesiun (2) $=\frac{1}{2}(220+260) \times 2=480$
Area f Tospegum (3) $=\frac{1}{2}(260+210) \times 2=470$
\therefore Tololdren $=1170$
20. (a) The marks scored by 10 pupils in a test were as follows. $\begin{array}{llllllllll}63 & 35 & 57 & 92 & 25 & 77 & 64 & 58 & 63 & 42\end{array}$ Calculate the mean and standard deviation of the 10 test marks.

$$
\begin{aligned}
& \Sigma x=576 \quad \sum_{x}^{2}=.36554 \\
& \begin{aligned}
& M_{\text {em }}=\frac{576}{10}=57.6 \\
& S=\sqrt{\frac{36654}{10}-\left(\frac{576}{6}\right)^{2}}=\sqrt{347.64} \\
&=18.6
\end{aligned}
\end{aligned}
$$

(b) The ages of the pupils have a mean of 15.8 years and a standard deviation of 0.36 years. State the mean and the
reason for your answer.

Mam age will have increased by $4=19.8 \mathrm{ys}$
Stound Deviatis unchanged became tho spread wa be to sane $=0.36$
(b) Find all solutions of the following equation in the range -180° to 360°

Fou cate $x=\sin ^{-17 x}(t-.08)=-53.1^{\circ}$

$$
\text { Fou symmetry } \begin{aligned}
x & =-180+53.1=-126.9^{\circ} \\
x & =180+53 \cdot 1 \\
x & =233.1^{\circ} \\
x & =360-53.1
\end{aligned}=306.9^{\circ}
$$

22. The diagram shows two triangles $A B C$ and $A C D$ with the common side $A C$.

The triangles $A B C$ and $A C D$ are such that $B C=32 \mathrm{~cm}, A D=19 \mathrm{~cm}, C D=28 \mathrm{~cm}, \hat{B A C}=74^{\circ}$ and $\widehat{A D C}=67^{\circ}$.

$\triangle A D C$ using Corine rule to find A

$$
\begin{aligned}
& d^{2}=a^{2}+c^{2}-2 a c \cos D \\
& d^{2}=28^{2}+19^{2}-2 \times 28 \times 19 \cos 67 \\
& d^{2}=1145-1064 \cos 67 \\
& d^{2}=1145-415.74 \\
& d^{2}=729.26 \\
& d=\sqrt{729.26}=27 \cdot 0 \mathrm{~cm}=A C
\end{aligned}
$$

Now for $\triangle A B C$ unis sine rule to find $A \hat{B C}$

$$
\begin{aligned}
\frac{\sin B}{b} & =\frac{\sin A}{a} \\
\frac{\sin B}{27} & =\frac{\sin 74}{32} \\
\sin B & =\frac{\sin 74}{32} \times 27 \\
\sin B & =0.811 \\
B & =\sin ^{-1}(0.811) \\
B & =54.2^{\circ}
\end{aligned}
$$

