

1. (a) Write down, in terms of n, the nth term of each of the following sequences.
(i) $4,8,12,16,20$,
\qquad
\qquad
\qquad
(ii) $2,7,12,17,22$,
\qquad
\qquad
\qquad
\qquad
(b) The nth term of another sequence of numbers is $3 n^{2}-5$. Write down the first three terms of this sequence.

\qquad
\qquad

4
2. Calculate the length of the diagonal $P R$ of a rectangular garden $P Q R S$ with sides 26.7 m and 18.5 m .

$$
\begin{aligned}
& P R^{2}=18.5^{2}+26.7^{2} \\
& P R^{2}=1055.14 \\
& P R=\sqrt{1055.14}=32.5 \mathrm{M}
\end{aligned}
$$

4. Find the compound interest when $£ 800$ is invested for 3 years at 5% per annum. distribution of the results.

Time $(t$ seconds $)$	Number of calls
$0<t \leqslant 30$	1
$30<t \leqslant 60$	7
$60<t \leqslant 90$	15
$90<t \leqslant 120$	27
$120<t \leqslant 150$	18
$150<t \leqslant 180$	12

Find an estimate for the mean time of the calls.
\qquad
$15 \times 1=15$

$$
45 \times 7=315
$$

$$
75 \times 15=1125
$$

$$
105 \times 27=2835
$$

$$
135 \times 18=2430
$$

$$
165 \times 12=1980+
$$

$$
\text { Mew }=\overline{8700} \div 80=108.75
$$

7. A solution to the equation

$$
x^{3}-4 x+1=0
$$

lies between 1.8 and 1.9 .
Use the method of trial and improvement to find this solution correct to 2 decimal places.

$\therefore x$ los between 1.86 and 1.87
test un $x=1.865 \quad 0.02688 \cdots$ toby
\qquad
\qquad
8. (a) Write each of the following numbers in standard form.
(1) 0.00076

(b) Find, in standard form, the value of

$$
\left(8.1 \times 10^{12}\right) \times\left(5.9 \times 10^{-4}\right)
$$

$$
4779000000=4.779 \times 10^{9}
$$

$$
\begin{equation*}
=4.8 \times 10^{9} \tag{2}
\end{equation*}
$$

9. Whenever Marcus and Melanie play a game of tennis the probability that Marcus wins the game is $\frac{2}{5}$.
(a) Complete the following tree diagram to show the probabilities of what can happen when Marcus and Melanie play two games of tennis.

(b) Calculate the probability that Melanie wins both games.
\qquad

$$
\frac{3}{5} \times \frac{3}{5}=\frac{9}{25}
$$

10. In the diagram $A B C$ is a straight line and $B D E$ is a straight line perpendicular to it. It is given that $A D=36 \mathrm{~m}, B C=49 \mathrm{~m}, \widehat{D A B}=43^{\circ}$ and $\widehat{E C B}=54^{\circ}$.

Calculate the length of $D E$.
For $\triangle A B D: B D=\sin 43 \times 36=24.6 \mu$
frow $\triangle B C E: B E=\operatorname{Tan} 54 \times 49=67.4 \mu$
\qquad

$$
\therefore D E=67.4-24.6=42.8 \mathrm{~m}
$$

\qquad
\qquad
\qquad
\qquad
11. (a) In the diagram $A B C$ is a straight line and $B C D E$ is a rectangle. The side $D C$ is of length $x \mathrm{~cm}, B C$ is of length $(x+4) \mathrm{cm}$ and $A B$ is of length $2 x \mathrm{~cm}$.

The diagram is not drawn to scale and the measurements are in centimetres.

The area of the whole shape $A B C D E$ is $48 \mathrm{~cm}^{2}$.
Giving full details of all your working, show clearly that x satisfies the equation
Total Are $=x^{2}+x^{x^{2}+2 x+24=0 .}=48$

$$
\div 2
$$

$$
\begin{align*}
& 2 x^{2}+4 x-48=0 \\
& x^{2}+2 x-24=0 \quad \text { As requital. } \tag{2}
\end{align*}
$$

(b) Solve the equation to find the length of $D C$.
\qquad
ether $x+6=0$ o. $x-4=0$

$$
x=-6 \quad x=4
$$

xan't have we length

$$
\therefore D C=4 \mathrm{a}
$$

14. Simplify each of the following.
(a) $(x+y)^{0}$

$$
1
$$

(b) $\sqrt{x^{16}}$

$$
\left(x^{16}\right)^{\frac{1}{2}}=x^{8}
$$

$$
\begin{gather*}
8 x-2-2 x+5=24 \\
6 x+3=24 \\
6 x=21 \\
x=\frac{21}{6}=\frac{7}{2} \tag{4}
\end{gather*}
$$

13. Factorise the expression $12 x^{2}+5 x-2$ and hence solve the equation $12 x^{2}+5 x-2=0$.

$$
\begin{aligned}
& 12 x^{2}-3 x+8 x-2 \\
& 3 x(4 x-1)+2(4 x-1) \\
& (3 x+2)(4 x-1)=0
\end{aligned}
$$

either $3 x+2=0 \quad$ of $\quad 4 x-1=0$

$$
\begin{equation*}
x=-\frac{2}{3} \quad x=\frac{1}{4} \tag{3}
\end{equation*}
$$

16. (a) The diagram shows a sketch of $y=x^{2}$. Move up 1. On the same diagram, sketch the curve $y=2 x^{2}+1$. Mark clearly the coordinates of the point where the curve crosses the y-axis.

move right 4
(b) The diagram shows the sketch of $y=h(x)$. On the same diagram sketch the curve $y=h(x-4)$. Mark clearly the coordinates of the point where the curve crosses the x-axis.

17. The graph below shows the speed of a train, in m / s, over a period of 100 seconds starting at time $t=0$ seconds.

(a) Estimate the acceleration of the train at time $t=40$ seconds. accal=gradient of tangent @ $t=40$

$$
\text { gradurt }=\frac{\text { chang in } y}{\text { Change in } x}=\frac{3}{56}=0.05 \mathrm{~m} / \mathrm{s}^{2}
$$

(b) The table below gives the speed of the train between $t=70$ and $t=100$.

Time t (seconds)	70	80	90	100
Speed $(\mathrm{m} / \mathrm{s})$	3.6	2.9	1.8	0

Use the trapezium rule with the values taken from the table to estimate the distance, in
metres, travelled by the train between $t=70$ and $t=100$ seconds.
Area f trapejwin $(1)=\frac{1}{2}(3.6+2.9) \times 10=32.5$
Area (expgumin(2) $=\frac{1}{2}(2.9+1.8) \times 10=23.5$
Area ftropegum (3) $=\frac{1}{2}(1.8+0) \times 103=9$
Diftravalle $=$ toted Area $=65$ metros.
19. For the first x seconds of a journey the average speed of a cyclist is $4 \mathrm{~m} / \mathrm{s}$. For the next $(5 x+2)$ seconds the average speed is $x \mathrm{~m} / \mathrm{s}$. The total distance travelled is 128 metres.
(a) Show that x satisfies the equation $5 x^{2}+6 x-128=0$.

Dist $=$ sped \times tine
For pt pot of journey Dist $=4 \times x=4 x$
For 2 post fo jovian $刀$ ul $=x \times(\sqrt{x}+2)=5 x^{2}+2 x$
Tot Dist $=128$

$$
\begin{aligned}
& \text { Dist }=128 \\
& \therefore \quad 5 x^{2}+2 x+4 x=128
\end{aligned}
$$

$5 x^{2}+6 x-128=0 \quad$ As, requital
(b) Use the formula method sostre the conation $5 x^{2}+6 x-128=0$, giving solutions surat to

$$
\begin{aligned}
& a=5=\frac{-6 \pm \sqrt{6^{2}-4 x \sqrt{x-128}}}{2 \times 5} \\
& x=\frac{-6 \pm \sqrt{36+2 \sqrt{60}}}{10}=\frac{-6 \pm \sqrt{2596}}{10}
\end{aligned}
$$

cit- $x=\frac{-6+\sqrt{2596}}{10}=4.5$
or $x=\frac{-6-\sqrt{2596}}{10}=-5.7 \times$ cant how e-ve time
\square

$$
\begin{align*}
& \text { (c) Hence find the total time for the journey. } \\
& \text { total time }=x+5 x+2 \\
& =4.5+5(4 \cdot 5)+2 \\
& =29 \text { seconds. }
\end{align*}
$$

20. The volume of a hemisphere is $7 \pi \mathrm{~cm}^{3}$. Calculate the radius of the hemisphere.
\qquad
V of solve $=\frac{4}{3} \pi r^{3}$
\qquad

$$
\frac{7 \pi \times 3}{2 t^{t}}=r^{3}
$$

$$
r^{3}=\frac{21}{2} \quad r=\sqrt[3]{\frac{21}{2}}=2.2 \mathrm{~cm}
$$

21. Express $\sqrt{180}$ in the form $a \sqrt{b}$, where a is a whole number and b is a prime number.

$$
\sqrt{36 \times 5}=\sqrt{36} \times \sqrt{5}=6 \sqrt{5}
$$

22. (a) Using the axes below, sketch the graph of $y=\cos x$ for values of x from -180° to 180°.

(b) Find all solutions of the following equation in the range -180° to 180°.

From colualat $x=-\cos ^{\text {cone }-088}(-0.829)=146.0^{\circ}$ Frouguphsymuty $x=-146.0^{\circ}$
\qquad
\qquad
\qquad
23. The diagram shows triangle GHK.

Diagram not drawn to scale.
Given that $G H=6.7 \mathrm{~cm}, G K=5.6 \mathrm{~cm}$ and $G \widehat{K} H=48^{\circ}$, calculate the area of the triangle $G H K$.
Need to find Hack
Confined GHK usb Sine Rule

$$
\begin{aligned}
& \frac{\sin H}{\operatorname{S.6}}=\frac{\sin 48}{6.7} \\
& \sin H=\frac{\sin 48}{6.7} \times 5.6=0.6211 \\
& H=\sin ^{-1}(0.6211 .)=38.4^{\circ} \\
& \therefore H \hat{G K K}=180-38.4-48=93.6^{\circ}
\end{aligned}
$$

Noun Area $f s=\frac{1}{2} \times 6.7 \times 5.6 \times \sin 93.6$

$$
=18.7 \mathrm{~cm}^{2}
$$

