Mark Scheme June 2008

GCE Mathematics (8371/8373,9371/9373)

A PEARSON COMPANY

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.org.uk.

June 2008

Publications Code UA020308

All the material in this publication is copyright $\ensuremath{\mathbb{C}}$ Edexcel Ltd 2008

Contents

Mark Schemes	Page
6663 Core Mathematics 1	5
6664 Core Mathematics 2	17
6665 Core Mathematics 3	27
6666 Core Mathematics 4	35
6674 Further Pure Mathematics FP1	47
6675 Further Pure Mathematics FP2	55
6676 Further Pure Mathematics FP3	63
6677 Mechanics 1	71
6678 Mechanics 2	77
6679 Mechanics 3	83
6680 Mechanics 4	89
6681 Mechanics 5	93
6683 Statistics 1	97
6684 Statistics 2	105
6691 Statistics 3	119
6686 Statistics 4	127
6689 Decision Mathematics 1	133
6690 Decision Mathematics 2	141

June 2008 6663 Core Mathematics C1 Mark Scheme

Question number	Scheme	Marks
1.	$2x + \frac{5}{3}x^3 + c$	M1A1A1 (3) 3
	M1 for an attempt to integrate $x^n \rightarrow x^{n+1}$. Can be given if + <i>c</i> is only correct term. 1 st A1 for $\frac{5}{3}x^3$ or $2x + c$. Accept $1\frac{2}{3}$ for $\frac{5}{3}$. Do <u>not</u> accept $\frac{2x}{1}$ or $2x^1$ as final ans 2 nd A1 for as printed (no extra or omitted terms). Accept $1\frac{2}{3}$ or 1.6 for $\frac{5}{3}$ but not 1.6 o Give marks for the first time correct answers are seen e.g. $\frac{5}{3}$ that later becomes 1.67, the treated as ISW NB M1A0A1 is not possible	r 1.67 etc

Question number	Scheme	Marks
2.	$x(x^2-9)$ or $(x\pm 0)(x^2-9)$ or $(x-3)(x^2+3x)$ or $(x+3)(x^2-3x)$	B1
	$x(x^2-9)$ or $(x\pm 0)(x^2-9)$ or $(x-3)(x^2+3x)$ or $(x+3)(x^2-3x)$ x(x-3)(x+3)	M1A1 (3)
		3
	B1 for first factor taken out correctly as indicated in line 1 above. So $x(x^2 + 9)$ M1 for attempting to factorise a relevant quadratic.	9) IS BU
	"Ends" correct so e.g. $(x^2 - 9) = (x \pm p)(x \pm q)$ where $pq = 9$ is OK.	
	This mark can be scored for $(x^2 - 9) = (x + 3)(x - 3)$ seen anywhere.	
	A1 for a fully correct expression with all 3 factors. We take out for $r(2 - r)(r + 2)$ which accres A1	
	Watch out for $-x(3-x)(x+3)$ which scores A1	
	Treat any working to solve the equation $x^3 - 9x$ as ISW.	

Question number	Scheme	Marks	
4. (a)	$[f'(x) =] 3 + 3x^2$	M1A1	(2)
(b)		M1	
	$x^2 = k \rightarrow x = \sqrt{k}$ (ignore \pm) x = 2 (ignore $x = -2$)	M1 A1	(3) 5
(a)	M1 for attempting to differentiate $x^n \rightarrow x^{n-1}$. Just one term will do. A poor integration attempt that gives $3x^2 +$ (or similar) scores M0A0 A1 for a fully correct expression. Must be 3 not $3x^0$. If there is a + <i>c</i> they score A	0.	
(b)	1 st M1 for forming a correct equation and trying to rearrange their $f'(x) = 15$ e.g. collect e.g. $3x^2 = 15-3$ or $1+x^2 = 5$ or even $3+3x^2 \rightarrow 3x^2 = \frac{15}{3}$ or $3x^{-1}+3x^2 = 15-3$ (i.e. algebra can be awful as long as they try to collect terms in their $f'(x) = 15$ equation	$\rightarrow 6x = 15$	
	2 nd M1 this is dependent upon their f'(x) being of the form $a + bx^2$ and attempting to solve $a + bx^2 = 15$ For correct processing leading to $x =$ Can condone arithmetic slips but processes should be correct so e.g. $3 + 3x^2 = 15 \rightarrow 3x^2 = \frac{15}{3} \rightarrow x = \frac{\sqrt{15}}{3}$ scores M1M0A0 $3 + 3x^2 = 15 \rightarrow 3x^2 = 12 \rightarrow x^2 = 9 \rightarrow x = 3$ scores M1M0A0 $3 + 3x^2 = 15 \rightarrow 3x^2 = 12 \rightarrow 3x = \sqrt{12} \rightarrow x = \frac{\sqrt{12}}{3}$ scores M1M0A0		

Question number	Scheme	Marks	S
5. (a)	$[x_2 =]a - 3$	B1	(1)
(b)	$[x_3 =] ax_2 - 3$ or $a(a-3) - 3$	M1	
	= a(a-3)-3 = a^2-3a-3 (*) both lines needed for A1	A1cso	(2)
(c)			
	$a^{2}-3a-3=7$ $a^{2}-3a-10=0$ or $a^{2}-3a=10$ (a-5)(a+2)=0	M1	
	(a-5)(a+2) = 0	dM1	
	a = 5 or -2	A1	(3)
			6
(a) (b) (c)	 B1 for a×1-3 or better. Give for a-3 in part (a) or if it appears in (b) they must state x₂ = a-3 This must be seen in (a) or before the a(a-3)-3 step. M1 for clear show that. Usually for a(a-3)-3 but can follow through their x₂ and even allow ax₂-3 A1 for correct processing leading to printed answer. Both lines needed and no incorrect working seen. 1st M1 for attempt to form a correct equation and start to collect terms. It must be a quadratic but need not lead to a 3TQ=0 		$ax_2 - 3$
	2 nd dM1 This mark is dependent upon the first M1. for attempt to factorize their 3TQ=0 or to solve their 3TQ=0. The "=0"can be $(x \pm p)(x \pm q) = 0$, where $pq = 10$ or $(x \pm \frac{3}{2})^2 \pm \frac{9}{4} - 10 = 0$ or correct use of quadra They must have a form that leads directly to 2 values for <i>a</i> . Trial and Improvement that leads to only one answer gets M0 here. A1 for both correct answers. Allow $x =$ Give 3/3 for correct answers with no working or trial and improvement that gives <u>both</u>	tic formula with	h <u>+</u>

Question Number	Scheme	Marks
6. (a)	5	B1M1A1 (3)
	-2.5	
(b)	$2x + 5 = \frac{3}{x}$	M1
	$2x^2 + 5x - 3[=0]$ or $2x^2 + 5x = 3$	A1
	(2x-1)(x+3) [=0]	M1
	$x = -3$ or $\frac{1}{2}$	A1
	$y = \frac{3}{-3}$ or $2 \times (-3) + 5$ or $y = \frac{3}{\frac{1}{2}}$ or $2 \times (\frac{1}{2}) + 5$	M1
	Points are $(-3, -1)$ and $(\frac{1}{2}, 6)$ (correct pairings)	Alft
(a)	B1 for curve of correct shape i.e 2 branches of curve, in correct quadrants, of roughly	y the correct shape
	and no touching or intersections with axes.	
	Condone up to 2 inward bends but there must be some ends that are roughly asyn	nptotic.
	M1 for a straight line <u>cutting</u> the positive <i>y</i> -axis and the negative <i>x</i> -axis. Ignore any v	alues.
	A1 for (0,5) and (-2.5,0) or points correctly marked on axes. Do not give for values	in tables.
	Condone mixing up (x, y) as (y, x) if one value is zero and other value correct.	
(b)	1^{st} M1 for attempt to form a suitable equation and multiply by x (at least one of 2x or +5 multiplied.) should be
	1^{st}A1 for correct 3TQ - condone missing = 0	
	2^{nd} M1 for an attempt to solve a relevant 3TQ leading to 2 values for $x =$	
	2^{nd} A1 for both $x = -3$ and 0.5.	
	T&I for x values <u>may</u> score 1 st M1A1 otherwise no marks unless both values correct. Answer only of $x = -3$ and $x = \frac{1}{2}$ scores 4/4, then apply the scheme for the final M1A1ft	
	3^{rd} M1 for an attempt to find at least one y value by substituting their x in either $\frac{3}{2}$ or 2x	: + 5
	3^{rd} A1ft follow through both their x values, in either equation but the same for each, correspansings required but can be $x = -3$, $y = -1$ etc	

Question number	Scheme	Marks
7. (a)	5, 7, 9, 11 or 5+2+2+2=11 or 5+6=11 use $a = 5$, $d = 2$, $n = 4$ and $t_4 = 5 + 3 \times 2 = 11$	B1 (1)
(b)	$t_n = a + (n-1)d$ with one of $a = 5$ or $d = 2$ correct (can have a letter for the other)	M1
	= 5 + 2(n - 1) or $2n + 3$ or $1 + 2(n + 1)$	A1 (2)
(c)	$S_n = \frac{n}{2} \left[2 \times 5 + 2(n-1) \right] \text{ or use of } \frac{n}{2} \left(5 + \text{"their } 2n+3 \right) \text{ (may also be scored in (b))}$	M1A1
	$= \{n(5+n-1)\} = n(n+4) (*)$	Alcso (3)
(d)	43 = 2n+3	M1
	[n] = 20	A1 (2)
(e)	$S_{20} = 20 \times 24$, $= \underline{480}$ (km)	M1A1 (2)
		10
(a)	B1 Any other sum must have a convincing argument	
(b)	 M1 for an attempt to use a + (n - 1)d with one of a or d correct (the other can be a left Allow any answer of the form 2n + p (p ≠ 5) to score M1. A1 for a correct expression (needn't be simplified) [Beware 5+(2n-1) scores A0] Expression must be in n not x. Correct answers with no working scores 2/2. 	,
(c)	M1 for an attempt to use S_n formula with $a = 5$ or $d = 2$ or $a = 5$ and their " $2n + 3$ " 1 st A1 for a fully correct expression 2 nd A1 for correctly simplifying to given answer. No incorrect working seen. Must see Do not give credit for part (b) if the equivalent work is given in part (d)	S_n used.
(d)	M1 for forming a suitable equation in n (ft their (b)) and attempting to solve leading to for 20 Correct answer only scores 2/2. Allow 20 following a restart but check working. eg 43 = $2n + 5$ that leads to 40 = $2n$ and $n = 20$ should score M1A0.	o <i>n</i> =
(e)	M1 for using their answer for n in $n(n + 4)$ or S_n formula, their n must be a value. A1 for 480 (ignore units but accept 480 000 m etc)[no matter where their 20 comes the second sec	rom]
	NB "attempting to solve" eg part (d) means we will allow sign slips and slips in arithmeti	с
	but not in processes. So dividing when they should subtract etc would lead to M0.	
	Listing in parts (d) and (e) can score 2 (if correct) or 0 otherwise in each part.	
	Poor labelling may occur (especially in (b) and (c)). If you see work to get $n(n + 4)$ mar	k as (c)

Question number	Scheme	Marks
8. (a)	[No real roots implies $b^2 - 4ac < 0$.] $b^2 - 4ac = q^2 - 4 \times 2q \times (-1)$ So $q^2 - 4 \times 2q \times (-1) < 0$ i.e. $q^2 + 8q < 0$ (*)	M1 A1cso
(2) (b)	$q(q+8) = 0 or (q \pm 4)^2 \pm 16 = 0$ $(q) = 0 or -8 -8 < q < 0 or q \in (-8, 0) or q < 0 and q > -8$ (2 cvs) $(2 cvs)$	M1 A1 A1ft (3) 5
(a)	 M1 for attempting b² - 4ac with one of b or a correct. < 0 not needed for M1 This may be inside a square root. A1cso for simplifying to printed result with no incorrect working or statements seen. Need an intermediate step e.g. q²8q < 0 or q² - 4×2q×-1<0 or q² - 4(2q)(-1) < 0 or q² - 8q(-1) < 0 or i.e. must have × or brackets on the 4ac term < 0 must be seen at least one line before the final answer. 	or $q^2 - 8q \times -1 < 0$
(b)	M1 for factorizing or completing the square or attempting to solve $q^2 \pm 8q = 0$. A m would lead to 2 values for q . The "= 0" may be implied by values appearing later 1 st A1 for $q = 0$ and $q = -8$ 2 nd A1 for $-8 < q < 0$. Can follow through their cvs but must choose "inside" region. q < 0, q > -8 is A0, $q < 0$ or $q > -8$ is A0, (-8, 0) on its own is A0 BUT " $q < 0$ and $q > -8$ " is A1 Do not accept a number line for final mark	

Question number	Scheme	Marks	
9. (a)	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = 3kx^2 - 2x + 1$	M1A1	(2)
(b)	Gradient of line is $\frac{7}{2}$	B1	
	When $x = -\frac{1}{2}$: $3k \times (\frac{1}{4}) - 2 \times (-\frac{1}{2}) + 1, = \frac{7}{2}$	M1, M1	
	$\frac{3k}{4} = \frac{3}{2} \Longrightarrow k = 2$	A1	(4)
(c)	$x = -\frac{1}{2} \Longrightarrow y = k \times (-\frac{1}{8}) - (\frac{1}{4}) - \frac{1}{2} - 5, = -6$	M1, A1	(2)
		8	
(a)	M1 for attempting to differentiate $x^n \to x^{n-1}$ (or -5 going to 0 will do)	Ι	
	A1 all correct. A "+ c " scores A0		
(b)	B1 for $m = \frac{7}{2}$. Rearranging the line into $y = \frac{7}{2}x + c$ does not score this mark until y	you are sure	
	they are using $\frac{7}{2}$ as the gradient of the line or state $m = \frac{7}{2}$		
	1 st M1 for substituting $x = -\frac{1}{2}$ into their $\frac{dy}{dx}$, some correct substitution seen		
	2^{nd} M1 for forming a suitable equation in k and attempting to solve leading to $k =$		
	Equation must use their $\frac{dy}{dx}$ and their gradient of line. Assuming the gradient is () or 7 scores	
	M0 unless they have clearly stated that this is the gradient of the line.		
	A1 for $k = 2$		
(c)	M1 for attempting to substitute their <i>k</i> (however it was found or can still be a letter) as	nd	
	$x = -\frac{1}{2}$ into y (some correct substitution)		
	A1 for - 6		

Question number	Scheme		Mark	S
10. (a)	$QR = \sqrt{(7-1)^2 + (0-3)^2}$		M1	
	$=\sqrt{36+9}$ or $\sqrt{45}$	$(\text{condone} \pm)$ A1		
	$=3\sqrt{5}$ or $a=3$	$(\pm 3\sqrt{5} \text{ etc is A0})$	A1	(3)
(b)	Gradient of QR (or l_1) = $\frac{3-0}{1-7}$ or $\frac{3}{-6}$, = $-\frac{1}{2}$		M1, A1	
	Gradient of l_2 is $-\frac{1}{-\frac{1}{2}}$ or 2		M1	
	Equation for l_2 is: $y-3 = 2(x-1)$ or $\frac{y-3}{x-1} = 2$ [or $y = 2x$	+ 1]	M1 A1ft	(5)
(c)	P is $(0, 1)$ (allow " $x = 0, y = 1$ " but it must be clear	arly identifiable as P)	B1	(1)
(d)	$PQ = \sqrt{(1 - x_P)^2 + (3 - y_P)^2}$	Determinant Method e.g(0+0+7) - (1+21+0)	M1	
	$PQ = \sqrt{1^2 + 2^2} = \sqrt{5}$	= -15 (0 e)	A1	
	Area of triangle is $\frac{1}{2}QR \times PQ = \frac{1}{2}3\sqrt{5} \times \sqrt{5}, = \frac{15}{2}$ or 7.5	Area = $\frac{1}{2} \left -15 \right = 7.5$	dM1, A1	(4)
				13
(a)	then M1 can be awarded, if no values are correct then M0. If no scored for a fully correct expression. M1 for attempting QR or QR^2 . May be implied by $6^2 + 3$ 1 st A1 for as printed or better. Must have square root. Condon	2		
(b)	1 st M1 for attempting gradient of QR 1 st A1 for - 0.5 or $-\frac{1}{2}$, can be implied by gradient of $l_2 = 2$		y = 2x +	1
	2^{nd} M1 for an attempt to use the perpendicular rule on their gra	dient of OR.	with no working.	
	3^{rd} M1 for attempting equation of a line using Q with their cha 2^{rd} A1ft requires all 3 Ms but can ft their gradient of QR .		Send to review.	
(d)	1 st M1 for attempting PQ or PQ^2 follow through their coordinates the second states of t	nates of P		
	1^{st}A1 for <i>PQ</i> as one of the given forms. 2^{nd}dM1 for correct attempt at area of the triangle. Follow thro		d their <i>PO</i> .	
	This M mark is dependent upon the first M mark	-		
	2 nd A1 for 7.5 or some exact equivalent. Depends on both Ms.			
<u>ALT</u>	Use QS where S is (1, 0) 1^{st} M1 for attempting area of OPQS and QSR and OPR. Need 1^{st} A1 for OPOS = $1/(1+2) \times 1 - 2$ OSB = 0.0PB = 7	all 3. M1 for at value in each	rminant Method tempt -at least or ach bracket corre	ne
	1 st A1 for $OPQS = \frac{1}{2}(1+3) \times 1 = 2$, $QSR = 9$, $OPR = \frac{7}{2}$ 2 nd dM1 for $OPQS + QSR - OPR = \dots$ Follow through their va 2 nd A1 for 7.5		rrect (<u>+</u> 15) orrect area form	ula
MR	Misreading x-axis for y-axis for P. Do NOT use MR rule as this They can only get M marks in (d) if they use PQ and QR .			

Question number	Scheme	Marks	
11. (a)	$\left(x^2 + 3\right)^2 = x^4 + 3x^2 + 3x^2 + 3^2$	M1	
	$\left(x^{2}+3\right)^{2} = x^{4}+3x^{2}+3x^{2}+3^{2}$ $\frac{\left(x^{2}+3\right)^{2}}{x^{2}} = \frac{x^{4}+6x^{2}+9}{x^{2}} = x^{2}+6+9x^{-2} \qquad (*)$	Alcso	(2)
(b)	$y = \frac{x^3}{2} + 6x + \frac{9}{1}x^{-1}(+c)$	M1A1A1	
	$20 = \frac{27}{3} + 6 \times 3 - \frac{9}{3} + c$	M1	
	c = -4	A1	
	c = -4 [y =] $\frac{x^3}{3} + 6x - 9x^{-1} - 4$	A1ft	(6) 8
(a)	M1 for attempting to expand $(x^2 + 3)^2$ and having at least 3(out of the 4) correct te	rms.	0
	A1 at least this should be seen and no incorrect working seen. If they never write $\frac{9}{x^2}$ as $9x^{-2}$ they score A0.		
(b)	1 st M1 for some correct integration, one correct x term as printed or better Trying $\frac{\int u}{\int v}$ loses the first M mark but could pick up the second.		
	1 st A1 for two correct x terms, un-simplified, as printed or better 2 nd A1 for a fully correct expression. Terms need not be simplified and $+c$ is not require No $+c$ loses the next 3 marks		
	2 nd M1 for using $x = 3$ and $y = 20$ in their expression for $f(x) \left[\neq \frac{dy}{dx} \right]$ to form a linear e	quation for <i>c</i>	
	3 rd A1 for $c = -4$ 4 th A1ft for an expression for y with simplified x terms: $\frac{9}{2}$ for $9x^{-1}$ is OK.		
	4 After for an expression for y with simplified x terms. $-$ for $9x$ is OK. Condone missing " $y =$ " Follow through their numerical value of c only.		

June 2008 6664 Core Mathematics C2 Mark Scheme

Question number	Scheme	Marks
1.	(a) Attempt to find f(-4) or f(4). $(f(-4) = 2(-4)^3 - 3(-4)^2 - 39(-4) + 20)$ (= -128 - 48 + 156 + 20) = 0, so $(x + 4)$ is a factor.	M1 A1 (2)
	(b) $2x^3 - 3x^2 - 39x + 20 = (x+4)(2x^2 - 11x + 5)$	M1 A1
	(2x-1)(x-5) (The 3 brackets need not be written together) or $\left(x-\frac{1}{2}\right)(2x-10)$ or equivalent	M1 A1cso(4)
		6
	 (a) Long division scores no marks in part (a). The <u>factor theorem</u> is required. However, the first two marks in (b) can be earned from division seen in (a) but if a different long division result is seen in (b), the work seen in (b) takes precedence for marks in (b). 	
	A1 requires zero and a simple <u>conclusion</u> (even just a tick, or Q.E.D.), or may be scored by a <u>preamble</u> , e.g. 'If $f(-4) = 0$, $(x + 4)$ is a factor'	
	 (b) First M requires use of (x + 4) to obtain (2x² + ax + b), a ≠ 0, b ≠ 0, even with a remainder. Working need not be seen this could be done 'by inspection'. Second M for the attempt to factorise their three-term quadratic. Usual rule: (kx² + ax + b) = (px + c)(qx + d), where cd = b and pq = k . If 'solutions' appear before or after factorisation, ignore but factors must be seen to score the second M mark. 	
	Alternative (first 2 marks):	
	$(x+4)(2x^{2}+ax+b) = 2x^{3} + (8+a)x^{2} + (4a+b)x + 4b = 0$, then compare coefficients to find <u>values</u> of a and b. [M1] a = -11, b = 5 [A1]	
	<u>Alternative:</u> Factor theorem: Finding that $f\left(\frac{1}{2}\right) = 0$: factor is, $(2x - 1)$ [M1, A1]	
	Finding that $f(5) = 0$. factor is, $(x-5)$ [M1, A1] "Combining" all 3 factors is <u>not</u> required. If just one of these is found, score the <u>first 2 mar</u>	
	A0. Losing a factor of 2: $(x+4)\left(x-\frac{1}{2}\right)(x-5)$ scores M1 A1 M1 A0 <u>Answer only, one s</u>	ign wrong:
	e.g. $(x+4)(2x-1)(x+5)$ scores M1 A1 M1 A0	

Question number	Scheme	Marks	
2.	(a) 1.732, 2.058, 5.196 awrt (One or two correct B1 B0, All correct B1 B1)	B1 B1 (2)	
	(b) $\frac{1}{2} \times 0.5$	B1	
	$\dots \{(1.732 + 5.196) + 2(2.058 + 2.646 + 3.630)\}$	M1 A1ft	
	= 5.899 (awrt 5.9, allowed even after minor slips in values)	A1 (4)	5
	 (a) Accept awrt (but less accuracy loses these marks). Also accept exact answers, e.g. √3 at x = 0, √27 or 3√3 at x = 2. (b) For the M mark, the first bracket must contain the 'first and last' values, and the second bracket must have no additional values. If the only mistake is to omit one of the values from the second bracket, this can be considered as a slip and the M mark can be allowed. Bracketing mistake: i.e. 1/2 × 0.5(1.732 + 5.196) + 2(2.058 + 2.646 + 3.630) scores B1 M1 A0 A0 <u>unless</u> the final answer implies that the calculation has been done correctly (then full marks can be given). x values: M0 if the values used in the brackets are x values instead of y values. Alternative: Separate trapezia may be used, and this can be marked equivalently. [1/4(1.732 + 2.058) + 1/4(2.058 + 2.646) + 1/4(2.646 + 3.630) + 1/4(3.630 + 5.196)] 		

Question number	Scheme	Ma	rks
3.	(a) $(1 + ax)^{10} = 1 + 10ax$ (Not unsimplified versions) + $\frac{10 \times 9}{2}(ax)^2 + \frac{10 \times 9 \times 8}{6}(ax)^3$ Evidence from <u>one</u> of these terms is sufficient	B1 M1	
	$+45(ax)^2$, $+120(ax)^3$ or $+45a^2x^2$, $+120a^3x^3$	A1, A1	(4)
	$ + 45(ax)^{2}, +120(ax)^{3} \text{ or } + 45a^{2}x^{2}, +120a^{3}x^{3} $ (b) $120a^{3} = 2 \times 45a^{2}$ $a = \frac{3}{4} \text{ or equiv.} \left(\text{e.g.} \frac{90}{120}, 0.75 \right) \text{ Ignore } a = 0, \text{ if seen} $	M1 A1	(2)
	(a) The terms can be 'listed' rather than added.		6
	M1: Requires correct structure: 'binomial coefficient' (perhaps from Pascal's triangle) and the correct power of x. (The M mark can also be given for an expansion in <u>descending</u> powers of x). Allow 'slips' such as: $\frac{10 \times 9}{2} ax^2, \frac{10 \times 9}{3 \times 2} (ax)^3, \frac{10 \times 9}{2} x^2, \frac{9 \times 8 \times 7}{3 \times 2} a^3 x^3$ However, $45 + a^2 x^2 + 120 + a^3 x^3$ or similar is M0. $\begin{pmatrix} 10\\2 \end{pmatrix}$ and $\begin{pmatrix} 10\\3 \end{pmatrix}$ or equivalent such as ${}^{10}C_2$ and ${}^{10}C_3$ are acceptable, and $even\left(\frac{10}{2}\right) and\left(\frac{10}{3}\right)$ are acceptable for the method mark. 1 st A1: Correct x^2 term. 2^{nd} A1: Correct x^3 term (These <u>must</u> be simplified). If simplification is not seen in (a), but correct simplified terms are seen in (b), these marks can be awarded. However, if <u>wrong</u> simplification is seen in (a), this takes precedence. <u>Special case</u> :		
	If $(ax)^2$ and $(ax)^3$ are seen within the working, but then lost		
	A1 A0 can be given if $45ax^2$ and $120ax^3$ are <u>both</u> achieved.		
	 (b) M: Equating their coefficient of x³ to twice their coefficient of x² or equating their coefficient of x² to twice their coefficient of x³. (or coefficients can be <u>correct</u> coefficients rather than their coefficients). Allow this mark even if the equation is trivial, e.g. 120a = 90a. An equation in a alone is required for this M mark, although 		
	condone, e.g. $120a^3x^3 = 90a^2x^2 \Rightarrow (120a^3 = 90a^2 \Rightarrow)a = \frac{3}{4}$.		
	<u>Beware</u> : $a = \frac{3}{4}$ following $120a = 90a$, which is A0.		

Question number	Scheme	Marks	
4.	(a) $x = \frac{\log 7}{\log 5}$ or $x = \log_5 7$ (i.e. correct method up to $x =$) 1.21Must be this answer (3 s.f.) (b) $(5^x - 7)(5^x - 5)$ Or another variable, e.g. $(y - 7)(y - 5)$, even $(x - 7)(x - 5)$ $(5^x = 7 \text{ or } 5^x = 5)$ $x = 1.2$ (awrt) ft from the answer to (a), if used x = 1 (allow 1.0 or 1.00 or 1.000)		(4) 6
	 (a) 1.21 with no working: M1 A1 (even if it left as 5^{1.21}). Other answers which round to 1.2 with no working: M1 A0. (b) M: Using the <u>correct</u> quadratic equation, attempt to factorise (5^x ± 7)(5^x ± 5), or attempt quadratic formula. Allow log₅ 7 or log 7/log 5 instead of 1.2 for A1ft. No marks for simply substituting a decimal answer from (a) into the given equation (perhaps showing that it gives approximately zero). <u>However</u>, note the following <u>special case</u>: Showing that 5^x = 7 satisfies the given equation, therefore 1.21 is a solution scores 0, 0, 1, 0 (and could score <u>full marks</u> if the <i>x</i> = 1 were also found). e.g. If 5^x = 7, then 5^{2x} = 49, and 5^{2x} - 12(5^x) + 35 = 49 - 84 + 35 = 0, so one solution is <i>x</i> = 1.21 ('conclusion' must be seen). To score this special case mark, values substituted into the equation must be <u>exact</u>. Also, the mark would <u>not</u> be scored in the following case: e.g. If 5^x = 7, 5^{2x} - 84 + 35 = 0 ⇒ 5^{2x} = 49 ⇒ <i>x</i> = 1.21 (Showing no appreciation that 5^{2x} = (5^x)²) B1: Do not award this mark if <i>x</i> = 1 clearly follows from <u>wrong</u> working. 		

Question number	Scheme	Marks	
5.	(a) $(8-3)^2 + (3-1)^2$ or $\sqrt{(8-3)^2 + (3-1)^2}$	M1 A1	
	$(x \pm 3)^{2} + (y \pm 1)^{2} = k \text{ or } (x \pm 1)^{2} + (y \pm 3)^{2} = k (k \text{ a positive value})$ $(x - 3)^{2} + (y - 1)^{2} = 29 \qquad (\underline{\text{Not}} (\sqrt{29})^{2} \text{ or } 5.39^{2})$	M1 A1	(4)
	(b) Gradient of radius = $\frac{2}{5}$ (or exact equiv.) Must be seen or used in (b)	B1	
	Gradient of tangent = $\frac{-5}{2}$ (Using perpendicular gradient method)	M1	
	$y-3 = \frac{-5}{2}(x-8)$ (ft gradient of radius, dependent upon <u>both</u> M marks)	M1 A1ft	
	5x + 2y - 46 = 0 (Or equiv., equated to zero, e.g. $92 - 4y - 10x = 0$) (Must have <u>integer</u> coefficients)	A1	(5) 9
	(a) For the M mark, condone <u>one</u> slip <u>inside</u> a bracket, e.g. $(8-3)^2 + (3+1)^2$, $(8-1)^2 + (1-3)^2$ The first two marks may be gained implicitly from the circle equation.		
	 (b) 2nd M: Eqn. of line through (8, 3), in any form, with any grad.(except 0 or ∞). If the 8 and 3 are the 'wrong way round', this M mark is only given if a correct general formula, e.g. y - y₁ = m(x - x₁), is quoted. <u>Alternative:</u> 2nd M: Using (8, 3) and an m value in y = mx + c to find a value of c. A1ft: as in main scheme. (Correct substitution of 8 and 3, then a wrong c value will still score the A1ft) 		
	 (b) <u>Alternatives for the first 2 marks</u>: (but in these 2 cases the 1st A mark is <u>not</u> ft) (i) Finding gradient of tangent by <u>implicit</u> differentiation 		
	$2(x-3) + 2(y-1)\frac{dy}{dr} = 0 (\text{or equivalent})$	B1	
	Subs. $x = 8$ and $y = 3$ into a 'derived' expression to find a value for dy/dx	M1	
	(ii) Finding gradient of tangent by differentiation of $y = 1 + \sqrt{20 + 6x - x^2}$		
	$\frac{dy}{dx} = \frac{1}{2} \left(20 + 6x - x^2 \right)^{-\frac{1}{2}} (6 - 2x) \text{(or equivalent)}$	B1	
	Subs. $x = 8$ into a 'derived' expression to find a value for dy/dx Another alternative:	M1	
	Using $xx_1 + yy_1 + g(x + x_1) + f(y + y_1) + c = 0$		
	$ x^{2} + y^{2} - 6x - 2y - 19 = 0 $ B1 8x + 3y, -3(x + 8) - (y + 3) - 19 = 0 M1, M1 A1ft (ft from circle eqn.) 5x + 2y - 46 = 0 A1		

Question number	Scheme	Marks	
6.	(a) $T_{20} = 5 \times \left(\frac{4}{5}\right)^{19} = 0.072$ (Accept awrt) Allow $5 \times \frac{4}{5}^{19}$ for M1 M1 A1	(2)	
	(b) $S_{\infty} = \frac{5}{1 - 0.8} = 25$	M1 A1	(2)
	(c) $\frac{5(1-0.8^k)}{1-0.8} > 24.95$ (Allow with = or <)	M1	
	$1 - 0.8^k > 0.998$ (or equiv., see below) (Allow with = or <)	A1	
	$k \log 0.8 < \log 0.002$ or $k > \log_{0.8} 0.002$ (Allow with = or <)	M1	
	$k > \frac{\log 0.002}{\log 0.8}$ (*)	A1cso (4)	
	(d) $k = 28$ (Must be this integer value) <u>Not</u> $k > 27$, or $k < 28$, or $k > 28$ B1	(1)	0
			9
	(a) and (b): Correct answer without working scores both marks.		
	(a) M: Requires use of the correct formula ar^{n-1} .		
	(b) M: Requires use of the correct formula $\frac{a}{1-r}$		
	(c) 1 st M: The sum may have already been 'manipulated' (perhaps wrongly), but this mark can still be allowed.		
	1^{st} A: A 'numerically correct' version that has dealt with $(1-0.8)$ denominator,		
	e.g. $1 - \left(\frac{4}{5}\right)^k > 0.998$, $5(1 - 0.8^k) > 4.99$, $25(1 - 0.8^k) > 24.95$,		
	$5-5(0.8^{k}) > 4.99$. In any of these, $\frac{4}{5}$ instead of 0.8 is fine,		
	and condone $\frac{4}{5}^k$ if correctly treated later.		
	2 nd M: Introducing logs and using laws of logs correctly (this must include dealing with the power k so that $p^{k} = k \log p$).		
	2^{nd} A: An <u>incorrect</u> statement (including equalities) at any stage in the working loses this mark (this is often identifiable at the stage $k \log 0.8 > \log 0.002$). (So a fully correct method with inequalities is required.)		

Question number	Scheme	Marks	
7.	(a) $r\theta = 7 \times 0.8 = 5.6$ (cm)	M1 A1	(2)
	(b) $\frac{1}{2}r^2\theta = \frac{1}{2} \times 7^2 \times 0.8 = 19.6 \text{ (cm}^2\text{)}$	M1 A1	(2)
	(c) $BD^2 = 7^2 + (\text{their } AD)^2 - (2 \times 7 \times (\text{their } AD) \times \cos 0.8)$	M1	
	$BD^{2} = 7^{2} + 3.5^{2} - (2 \times 7 \times 3.5 \times \cos 0.8) $ (or awrt 46° for the angle)	A1	
	(BD = 5.21) Perimeter = (their <i>DC</i>) + "5.6" + "5.21" = 14.3 (cm) (Accept awrt)	M1 A1	(4)
	(d) $\triangle ABD = \frac{1}{2} \times 7 \times (\text{their } AD) \times \sin 0.8$ (or awrt 46° for the angle) (ft their AD)	M1 A1ft	
	(= 8.78) (If the correct formula $\frac{1}{2}ab\sin C$ is <u>quoted</u> the use of any two of the sides of		
	ΔABD as a and b scores the M mark).		
	Area = "19.6" - "8.78" = $10.8 \text{ (cm}^2)$ (Accept awrt)	M1 A1	(4) 12
	Units (cm or cm ²) are not required in any of the answers. (a) and (b): Correct answers without working score both marks.		
	(a) M: Use of $r\theta$ (with θ in radians), or equivalent (could be working in degrees with a correct degrees formula).		
	(b) M: Use of $\frac{1}{2}r^2\theta$ (with θ in radians), or equivalent (could be working in		
	degrees with a correct degrees formula).		
	(c) 1^{st} M: Use of the (correct) cosine rule formula to find BD^2 or BD . Any other methods need to be complete methods to find BD^2 or BD . 2^{nd} M: Adding their <i>DC</i> to their arc <i>BC</i> and their <i>BD</i> .		
	<u>Beware</u> : If 0.8 is used, but calculator is in degree mode, this can still earn M1 A1 (for the required expression), but this gives $BD = 3.50$ so the perimeter may appear as $3.5 + 5.6 + 3.5$ (earning M1 A0).		
	(d) 1 st M: Use of the (correct) area formula to find ΔABD .		
	Any other methods need to be complete methods to find $\triangle ABD$.		
	2^{nd} M: Subtracting their $\triangle ABD$ from their sector ABC.		
	Using segment formula $\frac{1}{2}r^2(\theta - \sin\theta)$ scores no marks in part (d).		

Question number	Scheme	Marks	
8.	(a) $\left(\frac{dy}{dx}\right) = 8 + 2x - 3x^2$ (M: $x^n \to x^{n-1}$ for one of the terms, <u>not</u> just $10 \to 0$)	M1 A1	
	$3x^2 - 2x - 8 = 0$ $(3x + 4)(x - 2) = 0$ $x = 2$ (Ignore other solution) (*)	Alcso	(3)
	(b) Area of triangle = $\frac{1}{2} \times 2 \times 22$ (M: Correct method to find area of triangle)	M1 A1	
	(Area = 22 with no working is acceptable) $\int 10 + 8x + x^2 - x^3 dx = 10x + \frac{8x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}$ (M: $x^n \to x^{n+1}$ for one of the terms)	M1 A1 A1	
	Only one term correct:M1 A0 A0Integrating the gradient function2 or 3 terms correct:M1 A1 A0loses this M mark.		
	$\left[10x + \frac{8x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} \right]_0^2 = \dots $ (Substitute limit 2 into a 'changed function')	M1	
	$\left(=20+16+\frac{8}{3}-4\right)$ (This M can be awarded even if the other limit is wrong)		
	Area of $R = 34\frac{2}{3} - 22 = \frac{38}{3} \left(= 12\frac{2}{3} \right)$ (Or 12.6)	M1 A1	(8)
	M: <u>Dependent on use of calculus in (b) and correct overall 'strategy'</u> : subtract either way round.		
	A: Must be <u>exact</u> , not 12.67 or similar. A negative area at the end, even if subsequently made positive, loses the A mark.		11
	(a) The final mark may also be scored by <u>verifying</u> that $\frac{dy}{dx} = 0$ at $x = 2$.		
Eqn. of	(b) <u>Alternative</u> : fline $y = 11x$. (Marks dependent on subsequent use in integration) (M1: Correct method to find equation of line. A1: Simplified form $y = 11x$)	M1 A1	
	$\int 10 + kx + x^2 - x^3 dx = 10x + \frac{kx^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} $ (k perhaps -3)	M1 A1 A1	
	$\left[10x + \frac{kx^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}\right]_0^2 = \dots $ (Substitute limit 2 into a 'changed function')	M1	
	Area of $R = \left[10x - \frac{3x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}\right]_0^2 = 20 - 6 + \frac{8}{3} - 4 = \frac{38}{3}$ $\left(=12\frac{2}{3}\right)$	M1 A1	(8)
	Final M1 for $\int (\text{curve}) - \int (\text{line})$ or $\int (\text{line}) - \int (\text{curve})$.		

Question number	Scheme	Marks
9.	(a) 45(α)(This mark can be implied by an answer 65)180 - α ,Add 20 (for at least one angle)	B1 M1, M1
	65 155	A1 (4)
	(b) 120 or 240 (β): (This mark can be implied by an answer 40 or 80) (Could be achieved by working with 60, using 180 - 60 and/or180 + 60)	B1
	$360 - \beta$, $360 + \beta$ (or 120 + an angle that has been divided by 3) Dividing by 3 (for at least one angle)	M1, M1 M1
	40 80 160 200 280 320 First A1: at least 3 correct	A1 A1(6) 10
	 (a) Extra solution(s) in range: Loses the A mark. Extra solutions outside range: Ignore (whether correct or not). Common solutions: 65 (only correct solution) will score B1 M0 M1 A0 (2 marks) 65 and 115 will score B1 M0 M1 A0 (2 marks) 	
	44.99 (or similar) for α is B0, and 64.99, 155.01 (or similar) is A0.	
	 (b) Extra solution(s) in range: Loses the final A mark. Extra solutions outside range: Ignore (whether correct or not). Common solutions: 40 (only correct solution) will score B1 M0 M0 M1 A0 A0 (2 marks) 40 and 80 (only correct solutions) B1 M1 M0 M1 A0 A0 (3 marks) 40 and 320 (only correct solutions) B1 M0 M0 M1 A0 A0 (2 marks) 	
	<u>Answers without working</u> : Full marks can be given (in both parts), B and M marks by implication.	
	Answers given in radians: Deduct a maximum of 2 marks (misread) from B and A marks. (Deduct these at first and second occurrence.)	
	<u>Answers that begin</u> with statements such as $sin(x - 20) = sin x - sin 20$ or	
	$\cos x = -\frac{1}{6}$, then go on to find a value of ' α ' or ' β ', however badly, <u>can</u>	
	continue to earn the first M mark in either part, but will score <u>no further marks</u> . <u>Possible misread</u> : $\cos 3x = \frac{1}{2}$, giving 20, 100, 140, 220, 260, 340	
	Could score up to 4 marks B0 M1 M1 M1 A0 A1 for the above answers.	

edexcel

Question Number	Scheme	Marl	s
1.	(a) $e^{2x+1} = 2$ $2x+1 = \ln 2$ $x = \frac{1}{2}(\ln 2 - 1)$	M1 A1	(2)
	(b) $\frac{\mathrm{d}y}{\mathrm{d}x} = 8 \mathrm{e}^{2x+1}$	B1	
	$x = \frac{1}{2} (\ln 2 - 1) \implies \frac{\mathrm{d}y}{\mathrm{d}x} = 16$	B1	
	$y-8=16\left(x-\frac{1}{2}(\ln 2-1)\right)$	M1	
	$y = 16x + 16 - 8\ln 2$	A1	(4) [6]

June 2008 6665 Core Mathematics C3 Mark Scheme

Question Number	Scheme	Marks
2.	(a) $R^{2} = 5^{2} + 12^{2}$ $R = 13$ $\tan \alpha = \frac{12}{5}$ $\alpha \approx 1.176$ cao	M1 A1 M1 A1 (4)
	(b) $\cos(x-\alpha) = \frac{6}{13}$ $x-\alpha = \arccos \frac{6}{13} = 1.091 \dots$ $x = 1.091 \dots + 1.176 \dots \approx 2.267 \dots$ awrt 2.3	M1 A1 A1
	$x - \alpha = -1.091 \dots \qquad \text{accept } \dots = 5.19 \dots \text{ for M}$ $x = -1.091 \dots + 1.176 \dots \approx 0.0849 \dots \text{ awrt } 0.084 \text{ or } 0.085$ (c)(i) $R_{\text{max}} = 13 \qquad \text{ft their } R$ (ii) At the maximum, $\cos(x - \alpha) = 1 \text{ or } x - \alpha = 0$ $x = \alpha = 1.176 \dots \qquad \text{awrt } 1.2, \text{ ft their } \alpha$	M1 A1 (5) B1 ft M1 A1ft (3) [12]

Question Number	Scheme	Mark	KS .
3.	(a) y	B1 B1	(2)
	(b) (c) y y y y y y y y	B1 B1 B1 B1 B1	(2) (3)
	(d) $x > -1;$ $2 - x - 1 = \frac{1}{2}x$ Leading to $x = \frac{2}{3}$ $x < -1;$ $2 + x + 1 = \frac{1}{2}x$ Leading to $x = -6$	M1 A1 A1 M1 A1	(5) [12]

Question Number	Scheme	Marks
4.	(a) $x^2 - 2x - 3 = (x - 3)(x + 1)$	B1
	$f(x) = \frac{2(x-1) - (x+1)}{(x-3)(x+1)} \left(or \frac{2(x-1)}{(x-3)(x+1)} - \frac{x+1}{(x-3)(x+1)} \right)$	M1 A1
	$=\frac{x-3}{(x-3)(x+1)} = \frac{1}{x+1} *$ cso	A1 (4)
	(b) $\left(0, \frac{1}{4}\right)$ Accept $0 < y < \frac{1}{4}, \ 0 < f(x) < \frac{1}{4}$ etc.	B1 B1 (2)
	(c) Let $y = f(x)$ $y = \frac{1}{x+1}$ $x = \frac{1}{y+1}$	
	yx + x = 1 $y = \frac{1 - x}{x}$ or $\frac{1}{x} - 1$	M1 A1
	$f^{-1}(x) = \frac{1-x}{x}$ Domain of f^{-1} is $\left(0, \frac{1}{4}\right)$ ft their part (b)	B1 ft (3)
	(d) $fg(x) = \frac{1}{2x^2 - 3 + 1}$	
	$\frac{1}{2x^2 - 2} = \frac{1}{8}$	M1
	$x^2 = 5$ $x = \pm \sqrt{5}$ both	A1 A1 (3) [12]

Question Number	Scheme	Marks	
5.	(a) $\sin^{2}\theta + \cos^{2}\theta = 1$ $\div \sin^{2}\theta \qquad \qquad$	M1 A1 (2) M1 A1 M1 M1 M1 M1	
	$\csc \theta = 5$ or $\sin \theta = \frac{1}{5}$ $\theta = 11.5^{\circ}, 168.5^{\circ}$	A1 A1 A1 (6) [8]	

Question Number	Scheme	Marks	
6.	$(a)(i)\frac{d}{dx}\left(e^{3x}\left(\sin x + 2\cos x\right)\right) = 3e^{3x}\left(\sin x + 2\cos x\right) + e^{3x}\left(\cos x - 2\sin x\right)$ $\left(=e^{3x}\left(\sin x + 7\cos x\right)\right)$	M1 A1 A1 (3)	
	(ii) $\frac{d}{dx}(x^3\ln(5x+2)) = 3x^2\ln(5x+2) + \frac{5x^3}{5x+2}$	M1 A1 A1 (3)	
	(b) $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(x+1)^2 (6x+6) - 2(x+1)(3x^2+6x-7)}{(x+1)^4}$	M1 $\frac{A1}{A1}$	
	$=\frac{(x+1)(6x^2+12x+6-6x^2-12x+14)}{(x+1)^4}$	M1	
	$=\frac{20}{\left(x+1\right)^3} * $ cso	A1 (5)	
	(c) $\frac{d^2 y}{dx^2} = -\frac{60}{(x+1)^4} = -\frac{15}{4}$	M1	
	$(x+1)^4 = 16$ x = 1, -3 both	M1 A1 (3)	
		[14]	
	<i>Note</i> : The simplification in part (b) can be carried out as follows $\frac{(x+1)^2 (6x+6) - 2(x+1)(3x^2+6x-7)}{(x+1)^4}$		
	$=\frac{\left(6x^{3}+18x^{2}+18x+6\right)-\left(6x^{3}+18x^{2}-2x-14\right)}{\left(x+1\right)^{4}}$		
	$=\frac{20x+20}{(x+1)^4}=\frac{20(x+1)}{(x+1)^4}=\frac{20}{(x+1)^3}$	M1 A1	

Question Number	Scheme		Marks	
7.	(a) $f(1.4) = -0.568 \dots < 0$			
	$f(1.45) = 0.245 \dots > 0$	M1		
	Change of sign (and continuity) $\Rightarrow \alpha \in (1.4, 1.45)$	A1	(2)	
	(b) $3x^3 = 2x + 6$			
	$x^3 = \frac{2x}{3} + 2$			
	$x^2 = \frac{2}{3} + \frac{2}{x}$	M1 A1		
	$x = \sqrt{\left(\frac{2}{x} + \frac{2}{3}\right)} $ cso	A1	(3)	
	(c) $x_1 = 1.4371$	B1		
	$x_2 = 1.4347$	B1		
	$x_3 = 1.4355$	B1	(3)	
	(d) Choosing the interval $(1.4345, 1.4355)$ or appropriate tighter interval. f $(1.4345) = -0.01 \dots$	M1		
	$f(1.4355) = 0.003 \dots$	M1		
	Change of sign (and continuity) $\Rightarrow \alpha \in (1.4345, 1.4355)$			
	$\Rightarrow \alpha = 1.435$, correct to 3 decimal places * cso	A1	(3) [11]	
	<i>Note:</i> $\alpha = 1.435304553$		[]	

June 2008 6666 Core Mathematics C4 Mark Scheme

Questio n Numbe r	Scheme				Marks	
1. (a)	x 0 0.4 y e^0 $e^{0.08}$ or y 1 1.08329 1.3	0.8 e ^{0.32} 37713	1.2 e ^{0.72} 2.05443	1.6 e ^{1.28} 3.59664	2 e ² 7.38906	
					her e ^{0.32} and e ^{1.28} or awrt 1.38 and 3.60 mixture of e's and decimals)	B1 [1]
(b) Way 1	Area $\approx \frac{1}{2} \times 0.4$; $\times \left[e^0 + 2(e^{0.08} + e^{0.32} + e^{0.32}) + e^{0.32} + e^{0$	$e^{0.72} + e^{1.72}$	$\left(2^{28}\right) + e^2$		Outside brackets $\frac{1}{2} \times 0.4$ or 0.2 acture of trapezium <u>rule[];</u>	B1; <u>M1</u> √
	$= 0.2 \times 24.61203164 = 4.922406 = 4.922$ (4sf) 4.922				A1 cao [3]	
<i>Aliter</i> (b)	Area $\approx 0.4 \times \left[\frac{e^{0} + e^{0.08}}{2} + \frac{e^{0.08} + e^{0.32}}{2} + \frac{e^{0.32} + e^{0.72}}{2} + \frac{e^{0.72} + e^{1.28}}{2} + \frac{e^{1.28} + e^{2}}{2}\right]$ 0.4 and a divisor of 2 on all terms inside brackets.				B1	
Way 2	which is equivalent to: Area $\approx \frac{1}{2} \times 0.4$; $\times \left[e^0 + 2(e^{0.08} + e^{0.32} + e^{0.32}) + e^{0.32} + e^$	$e^{0.72} + e^{1.72}$	$^{28})+e^2$	ordinates	One of first and last a, two of the middle ates inside brackets ignoring the 2.	<u>M1</u> √
	= 0.2 × 24.61203164 = 4.922406	. = <u>4.922</u>	(4sf)		<u>4.922</u>	A1 cao [3]
						4 marks

Note an expression like Area $\approx \frac{1}{2} \times 0.4 + e^0 + 2(e^{0.08} + e^{0.32} + e^{0.72} + e^{1.28}) + e^2$ would score B1M1A0

Allow one term missing (slip!) in the () brackets for M1.

The M1 mark for structure is for the material found in the curly brackets ie $\int \text{first } y \text{ ordinate} + 2(\text{intermediate ft } y \text{ ordinate}) + \text{final } y \text{ ordinate }]$

Question Number	Scheme	Marks
2. (a)	$\begin{cases} u = x \implies \frac{du}{dx} = 1 \\ \frac{dv}{dx} = e^x \implies v = e^x \end{cases}$	
	$\int xe^{x} dx = xe^{x} - \int e^{x} \cdot 1 dx$ Use of 'integration by parts' formula in the correct direction . (See note.) Correct expression. (Ignore dx)	M1 A1
	$= x e^x - \int e^x dx$	
	$= x e^{x} - e^{x} (+ c)$ Correct integration with/without + c	A1 [3]
(b)	$\begin{cases} u = x^2 \implies \frac{du}{dx} = 2x \\ \frac{dv}{dx} = e^x \implies v = e^x \end{cases}$	
	$\int x^2 e^x dx = x^2 e^x - \int e^x 2x dx$ Use of 'integration by parts' formula in the correct direction . Correct expression. (Ignore dx)	M1 A1
	$= x^2 e^x - 2 \int x e^x dx$	
	$= x^{2}e^{x} - 2(xe^{x} - e^{x}) + c$ Correct expression including + c. (seen at any stage! in part (b)) You can ignore subsequent working.	A1 ISW [3]
	$\begin{cases} = x^{2}e^{x} - 2xe^{x} + 2e^{x} + c \\ = e^{x}(x^{2} - 2x + 2) + c \end{cases}$ Ignore subsequent working	[3]
		6 marks

Note integration by parts in the **correct direction** means that *u* and $\frac{dv}{dx}$ must be assigned/used as u = x and $\frac{dv}{dx} = e^x$ in part (a) for example.

+ c is not required in part (a). + c is required in part (b).

Question Number	Scheme	Marks
3. (a)	From question, $\frac{dA}{dt} = 0.032$ $\frac{dA}{dt} = 0.032$ seen or implied from working.	B1
	$\left\{A = \pi x^2 \implies \frac{dA}{dx} = \right\} 2\pi x$ 2\pi x by itself seen or implied from working	B1
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}t} \div \frac{\mathrm{d}A}{\mathrm{d}x} = (0.032)\frac{1}{2\pi x}; \left\{ = \frac{0.016}{\pi x} \right\}$ $0.032 \div \text{Candidate's } \frac{\mathrm{d}A}{\mathrm{d}x};$	M1;
	When $x = 2 \text{ cm}$, $\frac{dx}{dt} = \frac{0.016}{2 \pi}$	
	Hence, $\frac{dx}{dt} = 0.002546479 \text{ (cm s}^{-1}\text{)}$ awrt 0.00255	A1 cso [4]
(b)	$V = \underline{\pi x^2(5x)} = \underline{5\pi x^3}$ $V = \underline{\pi x^2(5x)} \text{ or } \underline{5\pi x^3}$	B1
	$\frac{dV}{dx} = 15\pi x^2$ or ft from candidate's V in one variable	Β1√
	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = 15\pi x^2 \cdot \left(\frac{0.016}{\pi x}\right); \left\{= 0.24x\right\}$ Candidate's $\frac{\mathrm{d}V}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t};$	M1 √
	When $x = 2 \text{ cm}$, $\frac{dV}{dt} = 0.24(2) = 0.48 \text{ (cm}^3 \text{ s}^{-1})$ 0.48 or awrt 0.48	A1 cso
		[4] 8 marks

Question Number	Scheme		Marks
4. (a)	$3x^2 - y^2 + xy = 4$ (eqn *)		
	$\left\{ \underbrace{\cancel{y}}_{\cancel{x}} \times \right\} \underbrace{6x - 2y \frac{dy}{dx}}_{\cancel{x}} + \left(\underbrace{y + x \frac{dy}{dx}}_{\cancel{x}} \right) = \underline{0}$	Differentiates implicitly to include either $\pm ky \frac{dy}{dx}$ or $x \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} =\right)$) Correct application $(\underline{)}$ of product rule $(3x^2 - y^2) \rightarrow \left(\underline{6x - 2y \frac{dy}{dx}}\right)$ and $(4 \rightarrow \underline{0})$	M1 B1 <u>A1</u>
	$\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-6x - y}{x - 2y}\right\} \text{ or } \left\{\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6x + y}{2y - x}\right\}$	not necessarily required.	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{8}{3} \implies \frac{-6x - y}{x - 2y} = \frac{8}{3}$	Substituting $\frac{dy}{dx} = \frac{8}{3}$ into their equation.	M1*
	giving $-18x - 3y = 8x - 16y$		
	giving $13y = 26x$	Attempt to combine either terms in x or terms in y together to give either ax or by .	dM1 *
	Hence, $y = 2x \implies \underline{y - 2x = 0}$	simplifying to give $y - 2x = 0$ AG	A1 cso [6]
(b)	At $P \& Q$, $y = 2x$. Substituting into eqn *		
	gives $3x^2 - (2x)^2 + x(2x) = 4$	Attempt replacing y by $2x$ in at least one of the y terms in eqn *	M1
	Simplifying gives, $x^2 = 4 \implies \underline{x = \pm 2}$	Either $x = 2$ or $x = -2$	<u>A1</u>
	$y = 2x \implies y = \pm 4$		
	Hence coordinates are $(2,4)$ and $(-2,-4)$	Both $(2,4)$ and $(-2,-4)$	<u>A1</u> [3]
			9 marks

Question Number	Scheme		Marks
	** represents a constant (which must be consistent for first	accuracy mark)	
5. (a)	$\frac{1}{\sqrt{(4-3x)}} = (4-3x)^{-\frac{1}{2}} = (4)^{-\frac{1}{2}} \left(1-\frac{3x}{4}\right)^{-\frac{1}{2}} = \frac{1}{2} \left(1-\frac{3x}{4}\right)^{-\frac{1}{2}}$	$(4)^{-\frac{1}{2}}$ or $\frac{1}{2}$ outside brackets	<u>B1</u>
		Expands $(1 + **x)^{-\frac{1}{2}}$ to give a simplified or an un-simplified $1 + (-\frac{1}{2})(**x)$;	M1;
	$= \frac{1}{2} \left[\frac{1 + (-\frac{1}{2})(**x); + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(**x)^2 + \dots}{2!} \right]$ with ** \ne 1	A correct simplified or an un- simplified [] expansion with candidate's followed through $(**x)$	A1√
	$= \frac{1}{2} \left[\frac{1 + \left(-\frac{1}{2}\right)\left(-\frac{3x}{4}\right) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}\left(-\frac{3x}{4}\right)^{2} + \dots}{2!} \right]$	Award SC M1 if you see $(-\frac{1}{2})(**x) + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(**x)^2$	
	$= \frac{1}{2} \left[1 + \frac{3}{8}x; + \frac{27}{128}x^2 + \dots \right]$	$\frac{\frac{1}{2} \left[1 + \frac{3}{8}x; \dots \right]}{\text{SC: } K \left[1 + \frac{3}{8}x + \frac{27}{128}x^2 + \dots \right]}$ $\frac{\frac{1}{2} \left[\dots; \frac{27}{128}x^2 \right]}{\frac{1}{2} \left[\dots; \frac{27}{128}x^2 \right]}$	
	$\left\{=\frac{1}{2}+\frac{3}{16}x;+\frac{27}{256}x^2+\ldots\right\}$	Ignore subsequent working	(5)
(b)	$(x+8)\left(\frac{1}{2}+\frac{3}{16}x+\frac{27}{256}x^2+\right)$	Writing $(x+8)$ multiplied by candidate's part (a) expansion.	[5] M1
	$= \frac{\frac{1}{2}x + \frac{3}{16}x^{2} + \dots}{4 + \frac{3}{2}x + \frac{27}{32}x^{2} + \dots}$	Multiply out brackets to find a constant term, two <i>x</i> terms and two x^2 terms.	M1
	$= 4 + 2x; + \frac{33}{32}x^2 + \dots$	Anything that cancels to $4 + 2x; \frac{33}{32}x^2$	★ ↓ A1; A1
			[4]
			9 marks

Question Number	Scheme		Marks
6. (a)	Lines meet where:		
	$\begin{pmatrix} -9\\0\\10 \end{pmatrix} + \lambda \begin{pmatrix} 2\\1\\-1 \end{pmatrix} = \begin{pmatrix} 3\\1\\17 \end{pmatrix} + \mu \begin{pmatrix} 3\\-1\\5 \end{pmatrix}$		
	i: $-9 + 2\lambda = 3 + 3\mu$ (1) Any two of j: $\lambda = 1 - \mu$ (2) k: $10 - \lambda = 17 + 5\mu$ (3)	Need any two of these correct equations seen anywhere in part (a).	M1
	(1) - 2(2) gives: $-9 = 1 + 5\mu \implies \mu = -2$	Attempts to solve simultaneous equations to find one of either λ or μ	dM1
	(2) gives: $\lambda = 1 - 2 = 3$	Both $\lambda = 3 \& \mu = -2$	A1
	$\mathbf{r} = \begin{pmatrix} -9\\0\\10 \end{pmatrix} + 3 \begin{pmatrix} 2\\1\\-1 \end{pmatrix} \text{or} \mathbf{r} = \begin{pmatrix} 3\\1\\17 \end{pmatrix} - 2 \begin{pmatrix} 3\\-1\\5 \end{pmatrix}$	Substitutes their value of either λ or μ into the line l_1 or l_2 respectively. This mark can be implied by any two correct components of $(-3, 3, 7)$.	ddM1
	Intersect at $\mathbf{r} = \begin{pmatrix} -3 \\ 3 \\ 7 \end{pmatrix}$ or $\mathbf{r} = \underline{-3\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}}$	$ \begin{pmatrix} -3 \\ 3 \\ 7 \end{pmatrix} \text{ or } \underline{-3\mathbf{i}+3\mathbf{j}+7\mathbf{k}} $ or $(-3, 3, 7)$	A1
	Either check k: $\lambda = 3$: LHS = 10 - $\lambda = 10 - 3 = 7$ $\mu = -2$: RHS = 17 + 5 $\mu = 17 - 10 = 7$ (As LHS = RHS then the lines intersect.)	Either check that $\lambda = 3$, $\mu = -2$ in a third equation or check that $\lambda = 3$, $\mu = -2$ give the same coordinates on the other line. Conclusion not needed.	B1 [6]
(b)	$d_1 = 2i + j - k$, $d_2 = 3i - j + 5k$		
	As $\mathbf{d}_1 \bullet \mathbf{d}_2 = \begin{pmatrix} 2\\1\\-1 \end{pmatrix} \bullet \begin{pmatrix} 3\\-1\\5 \end{pmatrix} = \underline{(2 \times 3) + (1 \times -1) + (-1 \times 5)} = 0$	Dot product calculation between the <i>two direction vectors</i> : $\frac{(2 \times 3) + (1 \times -1) + (-1 \times 5)}{\text{or } 6 - 1 - 5}$	M1
	Then l_1 is perpendicular to l_2 .	Result '=0' and appropriate conclusion	A1 [2]

Question Number	Scheme	Marks
6. (c) Way 1	Equating i ; $-9 + 2\lambda = 5 \implies \lambda = 7$ $\mathbf{r} = \begin{pmatrix} -9\\0\\10 \end{pmatrix} + 7 \begin{pmatrix} 2\\1\\-1 \end{pmatrix} = \begin{pmatrix} 5\\7\\3 \end{pmatrix}$ Substitutes candidate's $\lambda = 7$ into the line l_1 and finds $5\mathbf{i} + 7\mathbf{j} + 3\mathbf{k}$. The conclusion on this occasion is not needed.	B1 [1]
(d)	Let $\overrightarrow{OX} = -3\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}$ be point of intersection $\overrightarrow{AX} = \overrightarrow{OX} - \overrightarrow{OA} = \begin{pmatrix} -3\\3\\7 \end{pmatrix} - \begin{pmatrix} 5\\7\\3 \end{pmatrix} = \begin{pmatrix} -8\\-4\\4 \end{pmatrix}$ Finding the difference between their \overrightarrow{OX} (can be implied) and \overrightarrow{OA} . $\overrightarrow{AX} = \pm \begin{pmatrix} -3\\3\\7 \end{pmatrix} - \begin{pmatrix} 5\\7\\3 \end{pmatrix}$ $\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OA} + 2\overrightarrow{AX}$	M1√ ±
	$\overrightarrow{OB} = \begin{pmatrix} 5\\7\\3 \end{pmatrix} + 2 \begin{pmatrix} -8\\-4\\4 \end{pmatrix} \qquad $	dM1√
	Hence, $\overrightarrow{OB} = \begin{pmatrix} -11 \\ -1 \\ 11 \end{pmatrix}$ or $\overrightarrow{OB} = \underline{-11\mathbf{i} - \mathbf{j} + 11\mathbf{k}}$ or $\underline{(-11)}_{11}$ or $\underline{-11\mathbf{i} - \mathbf{j} + 11\mathbf{k}}_{01}$ or $\underline{(-11, -1, 11)}$	A1 [3]
		12 marks

Question Number	Scheme		Marks
7. (a)	$\frac{2}{4-y^2} \equiv \frac{2}{(2-y)(2+y)} \equiv \frac{A}{(2-y)} + \frac{B}{(2+y)}$		
	$2 \equiv A(2+y) + B(2-y)$	Forming this identity. NB : A & B are not assigned in this question	M1
	Let $y = -2$, $2 = B(4) \implies B = \frac{1}{2}$ Let $y = 2$, $2 = A(4) \implies A = \frac{1}{2}$	Either one of $A = \frac{1}{2}$ or $B = \frac{1}{2}$	A1
	giving $\frac{\frac{1}{2}}{(2-y)} + \frac{\frac{1}{2}}{(2+y)}$	$\frac{\frac{1}{2}}{(2-y)} + \frac{\frac{1}{2}}{(2+y)}$, aef	<u>A1</u> cao
	(If no working seen, but candidate writes down <i>correct partial fraction</i> then award all three marks. If no working is seen but one of <i>A</i> or <i>B</i> is incorrect then M0A0A0.)		[3]

Question Number	Scheme		Marks
7. (b)	$\int \frac{2}{4 - y^2} \mathrm{d}y = \int \frac{1}{\cot x} \mathrm{d}x$	Separates variables as shown. Can be implied. Ignore the integral signs, and the '2'.	B1
	$\int \frac{\frac{1}{2}}{(2-y)} + \frac{\frac{1}{2}}{(2+y)} \mathrm{d}y = \int \tan x \mathrm{d}x$		
	$\therefore -\frac{1}{2}\ln(2-y) + \frac{1}{2}\ln(2+y) = \ln(\sec x) + (c)$	$\ln(\sec x) \text{ or } -\ln(\cos x)$ Either $\pm a \ln(\lambda - y)$ or $\pm b \ln(\lambda + y)$ their $\int \frac{1}{\cot x} dx =$ LHS correct with ft for their <i>A</i> and <i>B</i> and no error with the "2" with or without + <i>c</i>	B1 M1; A1√
	$y = 0, x = \frac{\pi}{3} \implies -\frac{1}{2}\ln 2 + \frac{1}{2}\ln 2 = \ln\left(\frac{1}{\cos(\frac{\pi}{3})}\right) + c$	Use of $y = 0$ and $x = \frac{\pi}{3}$ in an integrated equation containing c;	M1*
	$\left\{0 = \ln 2 + c \implies \underline{c = -\ln 2}\right\}$		
	$-\frac{1}{2}\ln(2-y) + \frac{1}{2}\ln(2+y) = \ln(\sec x) - \ln 2$		
	$\frac{1}{2}\ln\left(\frac{2+y}{2-y}\right) = \ln\left(\frac{\sec x}{2}\right)$	Using either the quotient (or product) or power laws for logarithms CORRECTLY.	M1
	$\ln\left(\frac{2+y}{2-y}\right) = 2\ln\left(\frac{\sec x}{2}\right)$		
	$\ln\left(\frac{2+y}{2-y}\right) = \ln\left(\frac{\sec x}{2}\right)^2$	Using the log laws correctly to obtain a single log term on both sides of the equation.	dM1*
	$\frac{2+y}{2-y} = \frac{\sec^2 x}{4}$		
	Hence, $\frac{\sec^2 x = \frac{8+4y}{2-y}}{2-y}$	$\frac{\sec^2 x = \frac{8+4y}{2-y}}{2-y}$	A1 aef [8]
			11 marks

Question Number	Scheme		Marks
8. (a)	At $P(4, 2\sqrt{3})$ either $\underline{4 = 8\cos t}$ or $\underline{2\sqrt{3} = 4\sin 2t}$	$\underline{4 = 8\cos t} \text{or} \underline{2\sqrt{3} = 4\sin 2t}$	M1
	\Rightarrow only solution is $t = \frac{\pi}{3}$ where 0, $t, \frac{\pi}{2}$	$\underbrace{t = \frac{\pi}{3}}_{\text{stated in the range } 0, t, \frac{\pi}{2}}_{\text{stated in the range } 0, t, \frac{\pi}{2}}$	A1 [2]
(b)	$x = 8\cos t, \qquad y = 4\sin 2t$		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -8\sin t , \frac{\mathrm{d}y}{\mathrm{d}t} = 8\cos 2t$	Attempt to differentiate both x and y wrt t to give $\pm p \sin t$ and $\pm q \cos 2t$ respectively	M1
		Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	A1
	At P, $\frac{dy}{dx} = \frac{8\cos\left(\frac{2\pi}{3}\right)}{-8\sin\left(\frac{\pi}{3}\right)}$	Divides in correct way round and attempts to substitute their value of <i>t</i> (in degrees or radians) into their $\frac{dy}{dx}$ expression.	M1*
	$\left\{ = \frac{8\left(-\frac{1}{2}\right)}{\left(-8\right)\left(\frac{\sqrt{3}}{2}\right)} = \frac{1}{\sqrt{3}} = \text{awrt } 0.58 \right\}$	You may need to check candidate's substitutions for M1* Note the next two method marks are dependent on M1*	
	Hence m(N) = $-\sqrt{3}$ or $\frac{-1}{\frac{1}{\sqrt{3}}}$	Uses $m(\mathbf{N}) = -\frac{1}{\text{their } m(\mathbf{T})}$.	dM1*
	N: $y - 2\sqrt{3} = -\sqrt{3}(x-4)$	Uses $y - 2\sqrt{3} = (\text{their } m_N)(x - 4)$ or finds c using $x = 4$ and $y = 2\sqrt{3}$ and uses $y = (\text{their } m_N)x + "c".$	dM1*
	N: $\underline{y} = -\sqrt{3}x + 6\sqrt{3}$ AG	$\underline{y} = -\sqrt{3}x + 6\sqrt{3}$	A1 cso AG
	or $2\sqrt{3} = -\sqrt{3}(4) + c \implies c = 2\sqrt{3} + 4\sqrt{3} = 6\sqrt{3}$ so N: $\left[y = -\sqrt{3}x + 6\sqrt{3} \right]$		
			[6]

Question	Scheme		Marks
8. (c)	$A = \int_{0}^{4} y \mathrm{d}x = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} 4\sin 2t \cdot (-8\sin t) \mathrm{d}t$	attempt at $A = \int \underline{y} \frac{dx}{dt} dt$ correct expression (ignore limits and dt)	M1 A1
	$A = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} -32\sin 2t . \sin t dt = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} -32(2\sin t \cos t) . \sin t dt$	Seeing $\sin 2t = 2\sin t \cos t$ anywhere in PART (c).	M1
	$A = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} -64.\sin^2 t \cos t dt$ $A = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} 64.\sin^2 t \cos t dt$	Correct proof. Appreciation of how the negative sign affects the limits. Note that the answer is given in the question.	A1 AG
			[4]
(d)	{Using substitution $u = \sin t \implies \frac{du}{dt} = \cos t$ } {change limits: when $t = \frac{\pi}{3}$, $u = \frac{\sqrt{3}}{2}$ & when $t = \frac{\pi}{2}$, $u = 1$ }		
	$A = 64 \left[\frac{\sin^3 t}{3} \right]_{\frac{\pi}{3}}^{\frac{\pi}{2}}$ or $A = 64 \left[\frac{u^3}{3} \right]_{\frac{\sqrt{3}}{2}}^{1}$	$k \sin^3 t$ or ku^3 with $u = \sin t$ Correct integration ignoring limits.	M1 A1
	$A = 64 \left[\frac{1}{3} - \left(\frac{1}{3} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \right) \right]$	Substitutes limits of either $\left(t = \frac{\pi}{2} \text{ and } t = \frac{\pi}{3}\right)$ or $\left(u = 1 \text{ and } u = \frac{\sqrt{3}}{2}\right)$ and subtracts the correct way round.	dM1
	$A = 64\left(\frac{1}{3} - \frac{1}{8}\sqrt{3}\right) = \frac{64}{3} - 8\sqrt{3}$	$\frac{\frac{64}{3} - 8\sqrt{3}}{\frac{1}{3}}$ Aef in the form $a + b\sqrt{3}$, with awrt 21.3 and anything that	A1 aef isw [4]
	(Note that $a = \frac{64}{3}, b = -8$)	cancels to $a = \frac{64}{3}$ and $b = -8$.	
			1(
			16 marks

June 2008 Further Pure Mathematics FP1 Mark Scheme

Question number	Scheme	Marks
1.	(a) 4 (b) $(x-4)(x^2+4x+16)$ $x = \frac{-4 \pm \sqrt{16-64}}{2}$, $x = -2 \pm 2\sqrt{3}i$ (or equiv. surd for $2\sqrt{3}$) M1, A	B1 (1) M1 A1
	 (c) • Root on + ve real axis, one other in correct quad. Third root in conjugate complex position 	B1 B1ft (2
		7
	M1 in part (b) needs (x-"their 4") times quadratic ($x^2 + ax +$) or times ($x^2 + 16$)	
	M1 needs solution of three term quadratic	
	So ($x^2 + 16$) special case, results in B1M1A0M0A0B0B1 possibly	
	Alternative scheme for (b)	
	$(a+ib)^3 = 64$, so $a^3 + 3a^2ib + 3a(ib)^2 + (ib)^3 = 64$ and equate real, imaginary parts	M1
	so $a^3 - 3ab^2 = 64$ and $3a^2b - b^3 = 0$	A1
	Solve to obtain $a = -2$, $b = \sqrt{12}$	1A1
	Alternative ii	
	(x-4)(x-a-ib)(x-a+ib) = 0 expand and compare coefficients	M1
	two of the equations $-2a - 4 = 0$, $8a + a^2 + b^2 = 0$, $4(a^2 + b^2) = 64$	A 1
	Solve to obtain $a = -2$, $b = \sqrt{12}$	A1
	(c)Allow vectors, line segments or points in Argand diagram.	
	Extra points plotted in part (c) – lose last B mark	
	Part (c) answers are independent of part (b)	

Question number	Scheme	Marks	
2.	(a) $f(1.6) = \qquad f(1.7) =$ (Evaluate both)	M1	
	0.08 (or 0.09), -0.3 One +ve, one -ve or Sign change, \therefore root	A1	(2)
	(b) f'(x) = $-4\sin x - e^{-x}$	B1	
	$1.6 - \frac{f(1.6)}{f'(1.6)}$	M1	
	$= 1.6 - \frac{4\cos 1.6 + e^{-1.6}}{(-4\sin 1.6 - e^{-1.6})} \qquad \left(= 1.6 - \frac{0.085}{-4.2}\right)$	A1	
	= 1.62	A1	(4) 6
	 a) Any errors seen in evaluation of f(1.6) or f(1.7) lose A mark so -0.32 is A0 Values are 0.0851 and -0.3327 Need concluding statement also. (b) B1 may be awarded if seen in N-R as -4sin1.6-e^{-1.6} or as -4.2 M1 for statement of Newton Raphson (sign error in rule results in M 0) First A1 may be implied by correct work previously followed by correct answer Do not accept 1.620 for final A1. It must be given and correct to 3sf. 1.62 may follow incorrect work and is A0 No working at all in part (b) is zero marks. 		

		·
Question number	Scheme	Marks
3.	(a) $z = \frac{(a+2i)(a+i)}{(a-i)(a+i)} = \frac{a^2 + 3ai - 2}{a^2 + 1}$	M1 A1
	$\frac{a^2 - 2}{a^2 + 1} = \frac{1}{2}, \qquad 2a^2 - 4 = a^2 + 1 \qquad a = \sqrt{5} \qquad \text{(presence of } -\sqrt{5} \text{ also is A0)}$	M1, A1 (4)
	(b) Evaluating their " $\frac{3a}{a^2+1}$ ", or " $3a$ " $\left(\frac{\sqrt{5}}{2} \text{ or } 3\sqrt{5}\right)$ (ft errors in part <i>a</i>)	B1ft
	$\tan \theta = \frac{3a}{a^2 - 2} (=\frac{3\sqrt{5}}{3})$, arg $z = 1.15$ (accept answers which round to 1.15) M	1, A1 (3)
	(b) B mark is treated here as a method mark	
	The M1 is for tan (argz) = Imaginary part / real part	
	answer in degrees is A0	
	Alternative method:	
	(a) $\left(\frac{1}{2} + iy\right)(a - i) = a + 2i \implies \frac{1}{2}a + y = a \text{ and } ay - \frac{1}{2} = 2$	M1 A1
	$y = \frac{1}{2}a$ and $ay = \frac{5}{2} \implies \frac{1}{2}a^2 = \frac{5}{2} \implies a = \sqrt{5}$	M1 A1 (4)
	(b) $y = \frac{\sqrt{5}}{2}$ (May be seen in part (a))	B1ft
	$\tan \theta = \sqrt{5}$ $\arg z = 1.15$	M1 A1 (3)
	<u>Further Alternative method in (b)</u> Use $\arg(a + 2i) = \arg(a - i)$	B1 M1A1
	Use $\arg(a+2i) - \arg(a-i)$ = 0.7297 - (-0.4205) = 1.15	(3)
		7

Question number	Scheme	Marks
4.	(a) $m^2 + 4m + 3 = 0$ $m = -1, m = -3$	M1 A1
	C.F. $(x =)Ae^{-t} + Be^{-3t}$ must be function of t, not x	A1
	P.I. $x = pt + q$ (or $x = at^2 + bt + c$)	B1
	4p+3(pt+q) = kt+5 $3p = k$ (Form at least one eqn. in p and/or q)	M1
	4p + 3q = 5	
	$p = \frac{k}{3}, \qquad q = \frac{5}{3} - \frac{4k}{9} \left(= \frac{15 - 4k}{9} \right)$	A1
	General solution: $x = Ae^{-t} + Be^{-3t} + \frac{kt}{3} + \frac{15-4k}{9}$ must include x = and be function	oft A1ft
	(7) (b) When $k = 6$, $x = 2t - 1$	M1 A1cao (2)
		9
	(a) M1 for auxiliary equation substantially correct B1 not awarded for $x = kt$ +constant	
	(b) M mark for using $k = 6$ to derive a linear expression in <i>t</i> . (cf must have involved negative exponentials only) so e.g. $y = 2t - 1$ is M1 A0	

Question number	Scheme	Marks
	(a) $\frac{4}{x} = \frac{x}{2} + 3$ $x^2 + 6x - 8 = 0$ $x =, \left(\frac{-6 \pm \sqrt{68}}{2}\right)$ $-3 \pm \sqrt{17}$ - root not needed	M1, A1
	$-\frac{4}{x} = \frac{x}{2} + 3$, $x^2 + 6x + 8 = 0$ $x = -4$ and -2	M1, A1
	Three correct solutions (and no extras): -4 , -2 , $-3 + \sqrt{17}$	A1 (5)
	(b) Line through point on x axis and + y axis Curve 3 Intersections in correct quadrants	B1 B1 B1 (3)
	(c) $-4 < x < -2$, $x > -3 + \sqrt{17}$ o.e.	B1, B1(2) 10
	(a) <u>Alternative using squaring method</u> Square both sides and attempt to find roots M1 $x^4 + 12x^3 + 36x^2 - 64 = 0$ gives x = -2 and x = -4 Obtain quadratic factor, divide find solutions of quadratic and obtain $(-3 \pm \sqrt{17})$ M1 A	
	Last mark as before	
	(c) Use of ≤ instead of < lose last B1 Extra inequalities lose last B1	

Question number	Scheme	Marks
6.	(a) $\frac{2}{(r+1)(r+3)} = \frac{1}{r+1} - \frac{1}{r+3}$ M: $\frac{2}{(r+1)(r+3)} = \frac{A}{r+1} + \frac{B}{r+3}$	M1 A1 (2)
	(b) $r = 1$: $\left(\frac{2}{2 \times 4}\right) = \frac{1}{2} - \frac{1}{4}$	M1
	$r = 2:$ $\left(\frac{2}{3 \times 5}\right) = \frac{1}{3} - \frac{1}{5}$	
	$r = n - 1$: $\left(\frac{2}{n(n+2)}\right) = \frac{1}{n} - \frac{1}{n+2}$	
	$r = n$: $\left(\frac{2}{(n+1)(n+3)}\right) = \frac{1}{n+1} - \frac{1}{n+3}$	A1 ft
	Summing: $\sum = \frac{1}{2} + \frac{1}{3} - \frac{1}{n+2} - \frac{1}{n+3}$	M1 A1
	$=\frac{5(n+2)(n+3)-6(n+3)-6(n+2)}{6(n+2)(n+3)}=\frac{n(5n+13)}{6(n+2)(n+3)}$	d M1A1cso 6
	(c) $\sum_{21}^{30} = \sum_{1}^{30} -\sum_{1}^{20} = \frac{30 \times 163}{6 \times 32 \times 33} - \frac{20 \times 113}{6 \times 22 \times 23}, = 0.02738$	M1A1ftA1cso3
		(11)
	(b) The first M1 requires list of first two and last two terms	
	The A1 must be correct but ft on their <i>A</i> and <i>B</i> The second M1 requires terms to be eliminated and A1 is cao	
	(c) The M mark is also allowed for $\sum_{1}^{30} -\sum_{1}^{21}$ applied with numbers included	
	Using $u_{30} - u_{20}$ scores M0 A0 A0	
	The first A1 is ft their A and B or could include A and B, but final A1 is cao but	
	accept 0.027379775599 to 5 or more decimal places	

number	Scheme	Marks
7.	(a) $\frac{dy}{dx} = v + x \frac{dv}{dx}$	B1
	$\left(v + x\frac{\mathrm{d}v}{\mathrm{d}x}\right) = \frac{x}{vx} + \frac{3vx}{x} \implies x\frac{\mathrm{d}v}{\mathrm{d}x} = 2v + \frac{1}{v} \tag{(*)}$	M1 A1 (3)
	(b) $\int \frac{v}{1+2v^2} dv = \int \frac{1}{x} dx$	M1
	$\frac{1}{4}\ln(1+2\nu^2), = \ln x \ (+C)$	dM1 A1, B1
	$Ax^4 = 1 + 2v^2$	d M1
	$Ax^4 = 1 + 2\left(\frac{y}{x}\right)^2$ so $y = \sqrt{\frac{Ax^6 - x^2}{2}}$ or $y = x\sqrt{\frac{Ax^4 - 1}{2}}$ or $y = x\sqrt{\left(\frac{1}{2}e^{4\ln x + 4c} - \frac{1}{2}\right)}$	M1 A1 (7)
	(c) $x = 1$ at $y = 3$: $3 = \sqrt{\frac{A-1}{2}}$ $A =$	M1
	$y = \sqrt{\frac{19x^6 - x^2}{2}}$ or $y = x\sqrt{\frac{19x^4 - 1}{2}}$	A1 (2) 12
	(a) B1 for statement printed or for $\frac{dy}{dx} = (x + v\frac{dx}{dv})\frac{dv}{dx}$	
	First M1 is for RHS of equation only but for A1 need whole answer correct .	
	(b) First M1 accept $\int \frac{1}{2v + \frac{1}{v}} dv = \int \frac{1}{x} dx$	
	Second M1 requires an integration of correct form 1/4 may be missing	
	A1 for LHS correct with $\frac{1}{4}$ and B1 is independent and is for $\ln x$	
	Third M1 is dependent and needs correct application of log laws	
	Fourth M1 is independent and merely requires return to y/x for v	
	N.B. There is an IF method possible after suitable rearrangement – see note.	

Question number	Scheme	Marks	
8.	(a) $r\cos\theta = 4(\cos\theta - \cos^2\theta)$ or $r\cos\theta = 4\cos\theta - 2\cos2\theta - 2$	B1	
	$\frac{d(r\cos\theta)}{d\theta} = 4(-\sin\theta + 2\cos\theta\sin\theta) \text{ or } \frac{d(r\cos\theta)}{d\theta} = 4(-\sin\theta + \sin2\theta)$	M1 A1	
	$4(-\sin\theta + 2\cos\theta\sin\theta) = 0 \implies \cos\theta = \frac{1}{2}$ which is satisfied by $\theta = \frac{\pi}{3}$ and $r = 2(*)$	d M1 A1	(5)
	(b) $\frac{1}{2}\int r^2 d\theta = (8)\int (1-2\cos\theta+\cos^2\theta)d\theta$	M1	
	$= (8) \left[\theta - 2\sin\theta + \frac{\sin 2\theta}{4} + \frac{\theta}{2} \right]$	M1 A1	
	$8\left[\frac{3\theta}{2} - 2\sin\theta + \frac{\sin 2\theta}{4}\right]_{\pi/3}^{\pi/2} = 8\left(\left(\frac{3\pi}{4} - 2\right) - \left(\frac{\pi}{2} - \sqrt{3} + \frac{\sqrt{3}}{8}\right)\right) = 2\pi - 16 + 7\sqrt{3}$	M1	
	Triangle: $\frac{1}{2}(r\cos\theta)(r\sin\theta) = \frac{1}{2} \times 1 \times \sqrt{3} = \frac{\sqrt{3}}{2}$	M1 A1	
	Total area: $(2\pi - 16 + 7\sqrt{3}) + \frac{\sqrt{3}}{2} = (2\pi - 16) + \frac{15\sqrt{3}}{2}$	(A1) A1	(8)
			13
	(a) <u>Alternative for first 3 marks</u> : dr		
	$\frac{\mathrm{d}r}{\mathrm{d}\theta} = 4\sin\theta \qquad \qquad$		
	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -r\sin\theta + \cos\theta\frac{\mathrm{d}r}{\mathrm{d}\theta} = -4\sin\theta + 8\sin\theta\cos\theta \qquad \text{M1 A1}$		
	Substituting $r = 2$ and $\theta = \frac{\pi}{3}$ into original equation scores 0 marks.		
	(b) M1 needs attempt to expand $(1 - \cos \theta)^2$ giving three terms (allow slips)		
	Second M1 needs integration of $\cos^2 \theta$ using $\cos 2\theta \pm 1$ Third M1 needs correct limits- may evaluate two areas and subtract M1 needs attempt at area of triangle and A1 for cao Next A1 is for value of area within curve, then final A1 is cao, must be exact but allow 4 terms and isw for incorrect collection of terms		
	Special case for use of rsin θ gives B0M1A0M0A0		

June 2008 Further Pure Mathematics FP2 Mark Scheme

Question number	Scheme		Marks	
1.	$\frac{\mathrm{d}}{\mathrm{d}x}(\ln(\tanh x)) = \frac{\mathrm{sech}^2 x}{\tanh x}$		M1 A1	
	$=\frac{1}{\sinh x \cosh x} = \frac{2}{\sinh 2x} = 2\operatorname{cosech} 2x$	(*)	M1 A1	(4)
	Notes 1M1 Any valid differentiation attempt including $\ln(e^x - e^{-x}) - \ln(e^x + e^{-x})$ 1A1 c.a.o. (o.e e.g. $\frac{\cosh x}{\sinh x} - \frac{\sinh x}{\cosh x}$) 2M1 Proceeding to a hyperbolic expression in 2x 2A1 c.s.o.			4

Question number	Scheme	Marks
2.	$8\left(\frac{e^{x} + e^{-x}}{2}\right) - 4\left(\frac{e^{x} - e^{-x}}{2}\right) = 13$	B1
	$4e^{x} + 4e^{-x} - 2e^{x} + 2e^{-x} = 13$ $2e^{2x} - 13e^{x} + 6 = 0$ (or equiv.) (2) X = 1) (X = 0) = 0	M1 A1
	$(2e^{x}-1)(e^{x}-6) = 0$ $e^{x} = \frac{1}{2}, e^{x} = 6$	M1 A1ft
	$x = \ln \frac{1}{2}$ (or $-\ln 2$), $x = \ln 6$	A1 (6)
		6
	Notes	
	B1Correctly substituting exponentials for all hyperbolics1M1To a three term quadratic in e^x 1A1c.a.o. (o.e.)2M1Solving their equation to $e^x =$ 2A1ftf.t. their equation.3A1c.a.o.	

Question number	Scheme	Marks
	$\int \frac{3}{\sqrt{x^2 - 9}} \mathrm{d}x + \int \frac{x}{\sqrt{x^2 - 9}} \mathrm{d}x$	B1
	$\int \frac{3}{\sqrt{x^2 - 9}} dx + \int \frac{x}{\sqrt{x^2 - 9}} dx$ $= \left[3 \operatorname{arcosh} \frac{x}{3} + \sqrt{x^2 - 9} \right]$	M1 A1 A1
	$= \left[3\ln\left(\frac{x + \sqrt{x^2 - 9}}{(3)}\right) + \sqrt{x^2 - 9} \right]_{5}^{6}$	
	$= \left(3\ln(\frac{6+\sqrt{27}}{3}) + \sqrt{27}\right) - \left(3\ln(\frac{5+4}{3}) + 4\right)$	M1 A1
	$= 3\ln\frac{6+\sqrt{27}}{9} + \sqrt{27} - 4 = 3\ln\frac{2+\sqrt{3}}{3} + 3\sqrt{3} - 4 $ (*)	A1(7)
	Notes	7
	B1 Correctly changing to an integrable form. 1M1 Complete attempt to integrate at least one bit. 1A1 One term correct 2A1 All correct 2DM1 Substituting limits in all.Must have got first M1 3A1 Correctly (no follow through) 4A1 c.s.o.	

Question number	Scheme		Marks	
4.	(a) $\frac{dy}{dx} = \frac{3x^2}{\sqrt{1+x^6}}$, At $x = \sqrt{2}$ $\frac{dy}{dx} = \frac{6}{3} = 2$		M1 A1, A1	
	$y - \operatorname{arsinh}(2\sqrt{2}) = 2(x - \sqrt{2})$		M1	
	$y = 2x - 2\sqrt{2} + \ln(3 + 2\sqrt{2})$	(*)	A1	(5)
	(b) $\frac{3a^2}{\sqrt{1+a^6}} = 2$ $9a^4 = 4(1+a^6)$		M1 A1	
	$4a^{6} - 9a^{4} + 4 = 0 \qquad (a^{2} - 2)(4a^{4} - a^{2} - 2) = 0$		A1	
	$a^2 = \frac{1 \pm \sqrt{1+32}}{8}$ $a = \sqrt{\frac{1+\sqrt{33}}{8}} \approx 0.92$		M1 A1	(5)
	Notes			10
	(a)1M1 Attempt to differentiate need $(1 + x^6)^{-\frac{1}{2}}$ at least			
	1A1 correct 2A1 c.a.o.			
	 2M1 Substituting into straight line equation (linear). Must use x = √2 3A1 c.s.o. (b)1M1 Their derivative = their gradient (condone x throughout) 2M1= A mark cao, any form 1A1 quartic cao 3M1 Solving their quartic to 'a' = 2A1 c.a.o. (a.w.r.t. 0.92 to 2dp) 			

Question number	Scheme	Marks
5.	(a) $I_n = \int_0^{\pi} e^x \sin^n x dx = \left[e^x \sin^n x \right] - \int e^x n \sin^{n-1} x \cos x dx$	M1 A1
	$\left[e^{x}\sin^{n} x - ne^{x}\sin^{n-1} x\cos x\right] + n\int e^{x}(-\sin^{n} x + (n-1)\cos x\sin^{n-2} x\cos x)dx$	M1 A1
	$\left[e^x \sin^n x - ne^x \sin^{n-1} x \cos x\right]_0^{\pi} = 0$	B1
	$I_n = -n \int e^x \sin^n x dx + n(n-1) \int \sin^{n-2} x (1 - \sin^2 x) dx$	M1
	$I_n = -nI_n + n(n-1)I_{n-2} - n(n-1)I_n \qquad I_n = \frac{n(n-1)}{n^2 + 1}I_{n-2} \qquad (*)$	M1 A1 (8)
	(b) $I_4 = \frac{4 \times 3}{17} I_2$, $= \frac{12}{17} \times \frac{2}{5} I_0$	M1, A1
	$I_0 = \int_0^{\pi} e^x dx = \left[e^x \right]_0^{\pi} = \dots, \qquad I_4 = \frac{24}{85} \left(e^{\pi} - 1 \right)$	M1, A1 (4)
		12
	 (a)1M1 Complete attempt to use parts once in the right direction need sinⁿ⁻¹ x 1A1 cao 2M1 Attempt to use parts again with sensible choice of parts, not reversing. Need to be product. 2A1 cao 1B1 both = 0 at some point. (doesn't need to be correct, must must =0) 3DM1 I_n = expressions in ∫e^x sin^k x dx Depends on 2nd M 4DM1Expression in I_n and I_{n-2} to I_n = . Depends on 3rd M 3A1 c.s.o. (b)1M1 I₄ in terms of I₂ 1A1 I₄ correctly in terms of I₀ [o.e.] 2M1 ∫e^x dx 2A1 c.a.o for I₄. 	e differentiating a

Question number	Scheme		Marks	
6.	(a) $\int \cosh x \arctan(\sinh x) dx = \sinh x \arctan(\sinh x) - \int \sinh x \frac{\cosh x}{1 + \sinh^2 x} dx$		M1 A1 A1	
	$= \sinh x \arctan(\sinh x) - \frac{1}{2}\ln(1 + \sinh^2 x) \ (+C)$		M1 A1	(5)
	Or: $-\int \tanh x dx$			
	$= \sinh x \arctan(\sinh x) - \ln(\cosh x) \ (+C)$	M1 A1		
	<u>Alternative:</u>			
	Let $t = \sinh x$, $\frac{dt}{dx} = \cosh x$, $\int \arctan t dt = t \arctan t - \int \frac{t}{1+t^2} dt$	M1 A1 A1		
	$= \dots - \frac{1}{2} \ln(1 + t^2)$	M1		
	$= \sinh x \arctan(\sinh x) - \frac{1}{2}\ln(1 + \sinh^2 x) \ (+C) (\text{or equiv.})$	A1		
	(b) $\frac{1}{10} [\sinh x \arctan(\sinh x) - \ln(\cosh x)]_0^2 = \dots,$ 0.34	(*)	M1, A1	(2)
				7
	(a) <u>Alternative:</u> Let $\tan t = \sinh x$, $\sec^2 t \frac{dt}{dx} = \cosh x$, $\int t \sec^2 t dt = t \tan t - \int \tan t dt$ $= \dots - \ln(\sec t)$	M1 A1 A1 M1		
	$= \sinh x \arctan(\sinh x) - \ln \sqrt{1 + \sinh^2 x} (+C) \qquad (\text{or equiv.})$	A1		
	 Notes (a)1M1 Complete attempt to use parts 1A1 One term correct. 2A1 All correct. 2M1 All integration completed. Need a ln term. 3A1 c.a.o. (in x) o.e, any correct form, simplified or not (b)1M1 Use of limits 0 and 2 and 1/10. 1A1 c.s.o. 			

Question number	Scheme	Marks	
7.	(a) $\frac{2x}{16} - \frac{2y}{9}\frac{dy}{dx} = 0$ $\left[\frac{dx}{dt} = 4\sec t \tan t, \frac{dy}{dt} = 3\sec^2 t\right]$	M1 A1	
	$\frac{dy}{dx} = \frac{9x}{16y} = \frac{36\sec t}{48\tan t} = \frac{3}{4\sin t}$	M1 A1	
	$y - 3\tan t = \frac{-4\sin t}{3}(x - 4\sec t)$	M1	
	$4x\sin t + 3y = 25\tan t \tag{(*)}$	A1	(6)
	(b) Using $b^2 = a^2(e^2 - 1)$: $ae = \sqrt{a^2 + b^2} = 5$ or $e = \frac{5}{4}$	M1 A1	
	$P: 4\sec t = 5 \qquad \cos t = \frac{4}{5}$	M1	
	Coordinates of <i>P</i> : $(4 \sec t, 3 \tan t) = \left(5, \frac{9}{4}\right)$	M1 A1	(5)
	(c) R: $x = \frac{25 \tan t}{4 \sin t} = \frac{125}{16}$	M1	
	Area of <i>PRS</i> : $\frac{1}{2}(SR \times SP) = \frac{1}{2} \times \left(\frac{125}{16} - 5\right) \times \frac{9}{4} = \frac{405}{128} \left(=3\frac{21}{128}\right)$	M1 A1	(3)
		14	
	Notes (a)1M1 Differentitating 1A1 c.a.o.		
	$2M1 \frac{dy}{dx}$ in terms of t. 2A1 c.a.o. $3M1 Substituting gradient of normal into straight line equation.$ $3A1 c.s.o.$		
	(b)1M1 Use of $b^2 = a^2(e^2 - 1)$		
	 1A1 c.a.o. for ae or for e 2M1 Using <i>x</i> coordinate of focus= <i>x</i> coordinate of P, to get single term <i>f(t)</i>= constant. (Allow recovery in (c)) 3M1 Substituting into P coordinates to a number for <i>x</i> and for <i>y</i>. 		
	 2A1c.a.o. (c)1M1 Attempt to find x coordinate of R. 2M1 Substituting into correct template i.e. ½ x their R_x - their H_x x their P_y 1A1 c.a.o. 3 s.f. or better. 		

Question number	Scheme	Marks
8.	(a) $\dot{x} = 3 + 3\cos t$ $\dot{y} = 3\sin t$	B1
	$\frac{dy}{dx} = \frac{\dot{y}}{\dot{x}} = \frac{\sin t}{1 + \cos t} = \frac{2\sin \frac{t}{2}\cos \frac{t}{2}}{2\cos^2 \frac{t}{2}} = \tan \frac{t}{2} $ (*)	M1 A (3)
	(b) $s = \int \sqrt{\dot{x}^2 + \dot{y}^2} dt = 3\sqrt{2} \int \sqrt{1 + \cos t} dt$	M1 A1ft
	$= 6 \int_0^t \cos \frac{t}{2} dt = 12 \sin \frac{t}{2} \qquad \text{(Limits or establish } C = 0 \text{ for A1}) \qquad (*)$	M1 A (4)
	(c) $\tan \psi = \tan \frac{t}{2} \implies \psi = \frac{t}{2} \implies s = 12 \sin \psi$	B1 (1)
	(d) Surface area = $\int_{0}^{t} 2\pi y \sqrt{\dot{x}^{2} + \dot{y}^{2}} dt = 18\sqrt{2}\pi \int (1 - \cos t)\sqrt{1 + \cos t} dt$	M1 A1ft
	$=72\pi\int\sin^2\frac{t}{2}\cos\frac{t}{2}\mathrm{d}t$	M1
	$= \dots \left(\frac{2}{3}\sin^3\frac{t}{2}\right)$	M1 A1
	But $\sin \frac{t}{2} = \frac{s}{12} = \frac{L}{12}$, so surface area $= \frac{144\pi}{3} \times \frac{L^3}{12^3} = \frac{\pi L^3}{36}$ (*)	M1 A (7)
	 (a)1B1 both 1M1 Attempt at y'/x' 1A1 cso – on paper need to see half angles (b)1M1 Attempt at arc length, integral formula 1A1 cao follow through on their x' and y' one variable only 2M1 Integrating 2A1 cso – on paper (c) 1B1 cao (d) 1M1 Attempt at Surface area, integral formula.Condone lack of 2π. 1A1 cao follow through on their x' and y' condone lack of 2π. one variable only 2DM1Getting to integrable form condone lack of 2π. Depends on previous M mark. 3DM1 integrating condone lack of 2π. Depends on previous M mark. 3A1 cso – on paper. 	

6676 Further Pure Mathematics FP3 Mark Scheme

Question Number	Scheme	Marks
1.	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_0 = 0 + \cos 0.6 \ (= 0.825335)$ May be implicit	B1
	$y_1 \approx 0.05 \left(\frac{dy}{dx}\right)_0 + y_0$ (= 0.05 × 0.825335 + 0.6)	M1
	$y_1 \approx 0.641266$ = 0.6413 (4 d.p.) Allow awrt	A1
	= 0.6413 (4 d.p.) Allow awrt $\left(\frac{dy}{dx}\right)_{1} = 0.05 + \cos 0.641266 $ [or $0.05 + \cos(0.6 + 0.05\cos 0.6)$] = 0.851338	A1ft
	$y_2 \approx 0.05 \left(\frac{dy}{dx}\right)_1 + y_1$ (= 0.05 × 0.851338 + 0.641266)	
	Requires use of the differential equation to find $\left(\frac{dy}{dx}\right)_1$	M1
	$y_2 \approx 0.683833$ = 0.6838 (4 d.p.)	A1 (6)
	Degree mode in calculator: Gives answers: 0.6500 (0.64999) 0.7025 (0.70248) This can score B1 M1 A0 A1ft M1 A0	

Question Number	Scheme	Marks
2. (a)	$\begin{pmatrix} 1 & p & 2 \\ 0 & 3 & q \\ 2 & p & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} 1+2p+2 \\ 6+q \\ 2+2p+1 \end{pmatrix} = \begin{pmatrix} \lambda \\ 2\lambda \\ \lambda \end{pmatrix}$ is M1 A1 (2 eqns implied) $\begin{pmatrix} 3+2p \\ 6+q \\ 3+2p \end{pmatrix} \Rightarrow 6+q = 2(3+2p)$ is M1 A1 (2 eqns, use of parameter implied)	
	$1 + 2p + 2 = \lambda \qquad 6 + q = 2\lambda \qquad \text{M: Two equations, one in } p, \text{ one in } q$ $\therefore 6 + q = 6 + 4p \implies q = 4p \qquad (*)$	M1 A1 A1 (3)
(b)	$\begin{vmatrix} -4 & p & 2 \\ 0 & -2 & 4p \\ 2 & p & -4 \end{vmatrix} = 0 \text{ or } \begin{vmatrix} 1-\lambda & p & 2 \\ 0 & 3-\lambda & 4p \\ 2 & p & 1-\lambda \end{vmatrix} = 0 \text{ (or with } q \text{ instead of } 4p)$ $\begin{bmatrix} -4(8-4p^2) - p(0-8p) + 2(0+4) = 0 \\ p < 0 & p = -1 & q = -4 \end{bmatrix} \qquad p^2 = 1 \text{ or } pq = 4$ $p < 0 p = -1 q = -4 \qquad \text{M: Use } q = 4p \text{ to find value of } p \text{ and of } q$ A1: Positive values must be rejected	M1 A1 dM1 A1 (4)
(c)	$-4x - y + 2z = 0, -2y - 4z = 0, 2x - y - 4z = 0 \text{Any 2 eqns, with value of } p$ $2x = -y = 2z \qquad \text{(or 2 separate equations)}$ $\text{E.vector is } k \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \qquad \text{(Any non-zero value of } k)$	M1 M1 A1 (3)
	E.vector is $\binom{-2}{1}$ (Any non-zero value of k)	(10)
	(a) Assuming a value for λ , e.g. $\lambda = 1$, gives M1 A0 A0. (a) Assuming result and working 'backwards': $ \begin{pmatrix} 1 & p & 2 \\ 0 & 3 & 4p \\ 2 & p & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3+2p \\ 6+4p \\ 3+2p \end{pmatrix} = (3+2p) \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \text{ gives M1 A0 A0} $ (b) <u>Alternative:</u> $ \begin{pmatrix} 1 & p & 2 \\ 0 & 3 & 4p \\ 2 & p & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 5 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ or } \begin{pmatrix} -4 & p & 2 \\ 0 & -2 & 4p \\ 2 & p & -4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} (\text{or } q \text{ instead of } 4p) $ $ x + py + 2z = 5x, 3y + 4pz = 5y, 2x + py + z = 5z $ $py + 2z = 4x (i), 2pz = y (ii), 2x + py = 4z (iii)$ From (i) and (iii) $py = 2z$	M1
	From (i) and (iii) $py = 2z$ From (ii) $p^2 = 1$ (or equiv. in terms of p and/or q)	A1
	p < 0, p = -1, q = -4 A1: Positive values must be rejected (b) Using the eigenvector $\begin{pmatrix} 1\\2\\1 \end{pmatrix}$ scores <u>no marks</u> in this part.	dM1 A1

Question Number	Scheme	Marks
3. (a)	$\left(x^{2}+1\right)\frac{d^{3}y}{dx^{3}}+2x\frac{d^{2}y}{dx^{2}}=4y\frac{dy}{dx}+(1-2x)\frac{d^{2}y}{dx^{2}}-2\frac{dy}{dx}$	M1 A1
	$\left(x^{2}+1\right)\frac{d^{3}y}{dx^{3}} = \left(1-4x\right)\frac{d^{2}y}{dx^{2}} + \left(4y-2\right)\frac{dy}{dx} $ (*)	A1 (3)
(b)	$\left(\frac{d^2 y}{dx^2}\right)_0 = 3$	B1
	$\left(\frac{d^3 y}{dx^3}\right)_0 = 5$ Follow through: $\frac{d^3 y}{dx^3} = \frac{d^2 y}{dx^2} + 2$	B1ft
	$y = 1 + x + \frac{3}{2}x^{2} + \frac{5}{6}x^{3}$ x = -0.5, y \approx 1 - 0.5 + 0.375 - 0.104166	M1 A1 (4)
(c)	$x = -0.5, y \approx 1 - 0.5 + 0.375 - 0.104166$ = 0.77 (2 d.p.) [awrt 0.77]	B1 (1) (8)
	 (a) M: Use of product rule (at least once) and implicit differentiation (at least once). (b) M: Use of series expansion with values for the derivatives (can be allowed without the first term 1, and can also be allowed if final term uses 3 rather than 3!) 	

4. (a)	$ (x-3) + iy = 2 x + iy \Rightarrow (x-3)^{2} + y^{2} = 4x^{2} + 4y^{2}$ $\therefore x^{2} + y^{2} + 2x - 3 = 0$ $(x+1)^{2} + y^{2} = 4$ Centre (-1, 0), radius 2	M1 A1 M1 A1, A1 (5)
(b)	Circle, centre on x-axis B1 Circle, centre on x-axis B1 C (-1, 0), $r = 2$ dB1ft Follow through centre and radius, but dependent on first B1. There must be indication of their '-3', '-1' or '1' on the x- axis and no contradictory evidence for their radius. Straight line	B1 dB1
	Straight line B1 Straight line through $(-1, 0)$, or perp. bisector of $(-3, 0)$ and $(0, \sqrt{3})$. B1 Straight line through point of int. of circle & -ve y-axis, or through $(0, -\sqrt{3})$ B1	B1 B1 B1 (5)
(c)	Shading (only) inside circle Inside correct circle and all of the correct side of the correct line this mark is dependent on <u>all</u> the previous B marks in parts (b) and (c).	B1 dB1 (2) (12)
	 (a) 1st M: Use z = x + iy, and attempt square of modulus of each side. Not squaring the 2 on the RHS would be M1 A0. 2nd M: Attempting to express in the form (x - a)² + (y - b)² = k, or attempting centre and radius from the form x² + y² + 2gx + 2fy + c = 0 	

Question Number	Scheme	Marks
	$\begin{pmatrix} k & -2 \\ 1-k & k \end{pmatrix} \begin{pmatrix} t \\ 2t \end{pmatrix} = \begin{pmatrix} t(k-4) \\ t(1+k) \end{pmatrix}$ $t(1+k) = 2t(k-4)$	M1 dM1
(b)	$t(1+k) = 2t(k-4)$ $k = 9$ $det \mathbf{A} = k^2 + 2(1-k)$ $= (k-1)^2 + 1$, which is always positive $\mathbf{A} \text{ is non-singular}$ (Must be seen in part (b))	A1 (3) M1 M1 A1cso (3)
(c)	$\mathbf{A}^{-1} = \frac{1}{k^2 - 2k + 2} \begin{pmatrix} k & 2\\ k - 1 & k \end{pmatrix}$	M1 A1 (2)
(d)	$k = 3, \mathbf{A}^{-1} = \frac{1}{5} \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$	B1
	$\mathbf{A}\mathbf{p} = \mathbf{q} \Rightarrow \mathbf{p} = \mathbf{A}^{-1}\mathbf{q}$ $\mathbf{p} = \frac{1}{5} \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 4 \\ -3 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 6 \\ -1 \end{pmatrix}$	M1 A1 (3)
	Alt. $\begin{pmatrix} 3 & -2 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ -3 \end{pmatrix} \implies 3x - 2y = 4, -2x + 3y = -3 B1$	
	M1 A1 for solving two sim. eqns. in x and y to give $x = 1.2$, $y = -0.2$ (o.e.)	(11)
	 (b) 2nd M: Alternative is to use quadratic formula on the quadratic equation, or to use the discriminant, with a <u>comment</u> about 'no real roots', or 'can't equal zero', or a comment about the condition for singularity. (x = 2±√4-8/2) A1 Conclusion. (c) M: Need 1/(their det A), k's unchanged and attempt to change sign for either -2 (leaving as top right) or 1 - k (leaving as bottom left). (d) M: Requires an attempt to multiply the matrices. 	

Question Number	Scheme	Marks
6. (a)	$(\cos\theta + i\sin\theta)^{l} = \cos\theta + i\sin\theta$: true for $n = 1$	B1
	Assume true for $n = k$, $(\cos \theta + i \sin \theta)^k = \cos k\theta + i \sin k\theta$	
	$(\cos\theta + i\sin\theta)^{k+1} = (\cos k\theta + i\sin k\theta)(\cos\theta + i\sin\theta)$	M1
	$= \cos k\theta \cos \theta - \sin k\theta \sin \theta + i(\sin k\theta \cos \theta + \cos k\theta \sin \theta)$	M1
	(Can be achieved either from the line above or the line below) = $cos(k+1)\theta + i sin(k+1)\theta$	A1
	Requires full justification of $(\cos \theta + i \sin \theta)^{k+1} = \cos(k+1)\theta + i \sin(k+1)\theta$	
	(∴ true for $n = k + 1$ if true for $n = k$) ∴ true for $n \in \mathbb{Z}^+$ by induction	A1cso (5)
(b)	$\cos 5\theta = \operatorname{Re}\left[\left(\cos \theta + i\sin \theta\right)^5\right]$	
	$=\cos^5\theta + 10\cos^3\theta i^2\sin^2\theta + 5\cos\theta i^4\sin^4\theta$	M1 A1
	$=\cos^5\theta - 10\cos^3\theta\sin^2\theta + 5\cos\theta\sin^4\theta$	M1
	$=\cos^{5}\theta - 10\cos^{3}\theta (1 - \cos^{2}\theta) + 5\cos\theta (1 - \cos^{2}\theta)^{2}$	M1
	$\cos 5\theta = 16\cos^5 \theta - 20\cos^3 \theta + 5\cos\theta \tag{(*)}$	A1cso (5)
(c)	$\frac{\cos 5\theta}{\cos \theta} = 0 \implies \cos 5\theta = 0$	M1
	$5\theta = \frac{\pi}{2}$ $\theta = \frac{\pi}{10}$	A1
	$x = 2\cos\theta$, $x = 2\cos\frac{\pi}{10}$ is a root (*)	A1 (3) (13)
	For the 2 nd M mark: $(e^{ik\theta})(e^{i\theta}) = e^{i\theta(k+1)}$ (b) <u>Alternative</u> : $\left(z + \frac{1}{z}\right)^5 = z^5 + 5z^4 \left(\frac{1}{z}\right) + 10z^3 \left(\frac{1}{z}\right)^2 + 10z^2 \left(\frac{1}{z}\right)^3 + 5z \left(\frac{1}{z}\right)^4 + \left(\frac{1}{z}\right)^5$ M1 $= 2\cos 5\theta + 10\cos 3\theta + 20\cos \theta$ A1 $(2\cos \theta)^5 = \dots$ and attempt to put $\cos 3\theta$ in powers of $\cos \theta$ M1 Correct method (or formula) for putting $\cos 3\theta$ in powers of $\cos \theta$ M1 $\cos 5\theta = 16\cos^5 \theta - 20\cos^3 \theta + 5\cos \theta$ A1cso (c) <u>Alternatives</u> : (i) Substitute given root into $x^4 - 5x^2 + 5$: $\left(2\cos\frac{\pi}{10}\right)^4 - 5\left(2\cos\frac{\pi}{10}\right)^2 + 5 = 2^4\left(\cos\frac{\pi}{10}\right)^4 - 5 \times 2^2\left(\cos\frac{\pi}{10}\right)^2 + 5$ M1 'Multiply by $\cos \theta$ ' and use result from part (b): $\dots = \cos\frac{5\pi}{10}$ A1 = 0 and conclusion A1 (ii) Use $5\theta = \frac{\pi}{2}$ in result from part (b) M1 $16\left(\cos\frac{\pi}{10}\right)^5 - 20\left(\cos\frac{\pi}{10}\right)^3 + 5\left(\cos\frac{\pi}{10}\right)$ and divide by $\cos \theta$ A1 = 0 and conclusion A1	

Question Number	Scheme	Marks
7. (a)	$\overrightarrow{PQ} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}, \overrightarrow{PR} = 2\mathbf{i} - 3\mathbf{j} + 3\mathbf{k}$	B1
	$\overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & 2 \\ 2 & -3 & 3 \end{vmatrix} = 3\mathbf{i} + \mathbf{j} - \mathbf{k}$	M1 A1 (3)
(b)	$\mathbf{r} \cdot (3\mathbf{i} + \mathbf{j} - \mathbf{k}) = (\mathbf{i} - \mathbf{k}) \cdot (3\mathbf{i} + \mathbf{j} - \mathbf{k})$ [may use \overrightarrow{OQ} or \overrightarrow{OR}] $\mathbf{r} \cdot (3\mathbf{i} + \mathbf{j} - \mathbf{k}) = 4$ o.e.ft from (a)	M1 A1ft (2)
(c)	$\mathbf{r} \cdot (3\mathbf{i} + \mathbf{j} - \mathbf{k}) = 4$ o.e.ft from (a) $3x + y - z = 4$ (i), $x - 2y - 5z = 6$ (ii)(i) $\times 2 +$ (ii) $7x - 7z = 14$, $x = z + 2$ (M: Eliminate one variable)In (ii) $z + 2 - 2y - 5z = 6$, $y + 2 = -2z$ (M: Substitute back) $\therefore x = z + 2$ and $y + 2 = -2z$ o.e. $(y = 2 - 2x)$ (Two correct '3-term' equations)	M1 M1 A1
	$\frac{x-2}{(1)} = \frac{y+2}{-2} = \frac{z}{(1)}$ o.e. (M: Form cartesian equations)	M1 A1 (5)
(d)	Writing down direction vector of \overrightarrow{PS} from part (c).	M1
	$\overrightarrow{QR} = \mathbf{i} - 2\mathbf{j} + \mathbf{k} = \overrightarrow{PS} \therefore PS // QR \qquad \text{(or cross-product} = 0)$	A1 (2)
	$\overrightarrow{PT} = 4\mathbf{i} + 2\mathbf{j} (\text{or } \overrightarrow{QT} = 3\mathbf{i} + 3\mathbf{j} - 2\mathbf{k} \text{or } \overrightarrow{RT} = 2\mathbf{i} + 5\mathbf{j} - 3\mathbf{k})$ $\text{Volume} = \frac{1}{3} \left \overrightarrow{PQ} \times \overrightarrow{PR} \cdot \overrightarrow{PT} \right = \frac{1}{3} \left (3\mathbf{i} + \mathbf{j} - \mathbf{k}) \cdot (4\mathbf{i} + 2\mathbf{j}) \right \qquad \text{ft from (a)}$ (Instead of $\overrightarrow{PQ} \times \overrightarrow{PR}$, it could be $\overrightarrow{PQ} \times \overrightarrow{QR}$ or $\overrightarrow{PR} \times \overrightarrow{QR}$)	M1 A1ft
	$= \frac{1}{3}(12+2)$ = $4\frac{2}{3}$ o.e.	A1 (3) (15)
	(a) If both vectors are 'reversed', B0 M1 A1 is possible	
	(c) <u>Alternative</u> : Direction of line: $\begin{pmatrix} 1 \\ -2 \\ -5 \end{pmatrix} \times \begin{pmatrix} 3 \\ 1 \\ -1 \end{pmatrix} = 7 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ M2 A1	
	Through P (1,0,-1): $\frac{x-1}{1} = \frac{y}{-2} = \frac{z+1}{1}$ M1 A1	
	(e) <u>Alternative</u> : $ \frac{1}{3}\begin{vmatrix} 4 & 2 & 0 \\ 1 & -1 & 2 \\ 2 & -3 & 3 \end{vmatrix} $ gives M1 A1 directly. Here ft from 1 st line of part (a). <u>Special case</u> : $ \frac{1}{6} \text{ or } \frac{1}{2} \text{ instead of } \frac{1}{3}, \text{ but method otherwise correct: M1 A0 A0} $	

June 2008 6677 Mechanics M1 Mark Scheme

	Mark Scheme	
Question Number	Scheme	Marks
1.	(a) $I = mv \implies 3 = 0.4 \times v$ $v = 7.5 \text{ (ms}^{-1}\text{)}$	M1 A1 A1 (3)
	(b) 7.5 0.4 $0.6v$ $5LM 0.4 \times 7.5 = 0.4v + 0.6 \times 50 = 0.4v \Rightarrow v = 0 * cso$	M1 A1 A1 (3) [6]
2.	(a) $v^2 = u^2 + 2as \implies 17.5^2 = u^2 + 2 \times 9.8 \times 10$ Leading to $u = 10.5$	M1 A1 A1 (3)
	(b) $v = u + at \implies 17.5 = -10.5 + 9.8T$	M1 A1 f.t.
	$T = 2\frac{6}{7} (s)$	DM1 A1 (4)
	Alternatives for (b) $s = \left(\frac{u+v}{2}\right)T \Longrightarrow 10 = \left(\frac{17.5 + -10.5}{2}\right)T$ $\frac{20}{7} = T$	[7] M1A1 f.t. DM1A1 (4)
	OR $s = ut + \frac{1}{2}at^2 \implies -10 = 10.5t - 4.9t^2$	M1 A1 f.t.
	Leading to $T = 2\frac{6}{7}, \left(-\frac{5}{7}\right)$ Rejecting negative	DM1 A1 (4)
	(b) can be done independently of (a) $s = vt - \frac{1}{2}at^2 \implies -10 = -17.5t + 4.9t^2$	M1 A1
	Leading to $T = 2\frac{6}{7}, \frac{5}{7}$	DM1
	For final A1, second solution has to be rejected. $\frac{5}{7}$ leads to a negative <i>u</i> .	A1 (4)

Question Number	Scheme	Marks
3.	(a) $\tan \theta = \frac{8}{6}$ $\theta \approx 53^{\circ}$ (b) $\mathbf{F} = 0.4 \left(6\mathbf{i} + 8\mathbf{j} \right) \left(= 2.4\mathbf{i} + 3.2\mathbf{j} \right)$	M1 A1 (2) M1
	$ \mathbf{F} = \sqrt{(2.4^2 + 3.2^2)} = 4$ The method marks can be gained in either order.	M1 A1 (3)
	(c) $\mathbf{v} = 9\mathbf{i} - 10\mathbf{j} + 5(6\mathbf{i} + 8\mathbf{j})$ = 39 $\mathbf{i} + 30\mathbf{j}$ (ms ⁻¹)	M1 A1 A1 (3) [8]
4.	(a) 25 10 0 30 90 t 25, 10, 30, 90 25, 10, 30, 90	B1 B1 (2)
	(b) $30 \times 25 + \frac{1}{2}(25+10)t + 10(60-t) = 1410$	M1 <u>A1</u> A1
	=	DM1 A1 M1 A1 (7) [9]

Question Number	Scheme	Marks
7.	(a) 45 N 50° 48 30° 48	
	$R = 45\cos 40^\circ + 4g\cos 30^\circ$ $R \approx 68$ accept 68.4	M1 A2 (1, 0) DM1 A1 (5)
	(b) Use of $F = \mu R$	M1
	$F + 4g\sin 30 = 45\cos 50^{\circ}$	M1 A2 (1, 0)
	Leading to $\mu \approx 0.14$ accept 0.136	DM1 A1 (6) [11]

Question Number	Scheme	Marks
8.	(a) $T T 30$ $\mu 2g \mu 2g \mu 3g$	
	$s = ut + \frac{1}{2}at^{2} \implies 6 = \frac{1}{2}a \times 9$ $a = 1\frac{1}{3} (ms^{-2})$	M1 A1 (2)
	(b) N2L for system $30 - \mu 5g = 5a$ ft their <i>a</i> , accept symbol $\mu = \frac{14}{3g} = \frac{10}{21}$ or awrt 0.48	M1 A1ft DM1 A1 (4)
	(c) N2L for P $T - \mu 2g = 2a$ ft their μ , their a , accept symbols $T - \frac{14}{3g} \times 2g = 2 \times \frac{4}{3}$	M1 A1 ft
	Leading to $T = 12$ (N) awrt 12 Alternatively N2L for Q $30 - T - \mu 3g = 3a$ Leading to $T = 12$ (N) awrt 12	DM1 A1 (4) M1 A1 DM1 A1
	(d) The acceleration of <i>P</i> and <i>Q</i> (or the whole of the system) is the same. (e) $v = u + at \implies v = \frac{4}{3} \times 3 = 4$	B1 (1) B1 ft on <i>a</i>
	N2L (for system or either particle) $-5\mu g = 5a$ or equivalent $a = -\mu g$	M1
	$v = u + at \implies 0 = 4 - \mu gt$ Leading to $t = \frac{6}{7}$ (s) accept 0.86, 0.857	DM1 A1 (4) [15]

June 2008 6678 Mechanics M2 Mark Scheme

Question Number	Scheme	Marks
1.	Tr Tr Tr Tr Tr Tr Tr Tr	M1 <u>A1</u> A1 M1 A1ft A1 cso (6) [6]
2.	(a) 3u 2u $4m 3m 3m y = 4ett$ $LM 12mu + 6mu = 4mx + 12meu$ $NEL 4eu - x = eu$ Eliminating x to obtain equation in e Leading to $e = \frac{3}{4}$ * cso (b) $x = 3eu$ or $\frac{9}{4}u$ or $4.5u - 3eu$ seen or implied in (b) Loss in KE $= \frac{1}{2}4m(3u)^2 + \frac{1}{2}3m(2u)^2 - \frac{1}{2}4m(\frac{9}{4}u)^2 - \frac{1}{2}3m(3u)^2$ $ft their x$ $= 24mu^2 - 23\frac{5}{8}mu^2 = \frac{3}{8}mu^2 = 0.375mu^2$	B1 M1 A1 DM1 A1 (5) B1 M1 A1ft A1 (4) [9]

Question Number	Scheme	Marks
3.	(a $\Delta KE = \frac{1}{2} \times 3.5(12^2 - 8^2)$ (=140) or KE at A, B correct separately	B1
	$\Delta PE = 3.5 \times 9.8 \times 14 \sin 20^{\circ} (\approx 164.238) \text{ or PE at A, B correct separately}$ $\Delta E = \Delta KE + \Delta PE \approx 304, 300$	M1 A1 DM1 A1 (5)
	(b) Using Work-Energy $F_r = \mu \times 3.5g \cos 20^{\circ}$ $304.238 \dots = F_r \times 14$ ft their (a), F_r $304.238 \dots = \mu 3.5g \cos 20^{\circ} \times 14$ $\mu \approx 0.674$, 0.67	M1 A1 M1 A1 ft A1 (5)
	Alternative using N2L $\mu R \qquad \qquad F_r = \mu \times 3.5g \cos 20^\circ$ $y^2 = u^2 + 2as \implies 8^2 = 12^2 - 2a \times 14$	[10] M1 A1
	$v^{2} = u^{2} + 2as \implies 8^{2} = 12^{2} - 2a \times 14$ $\begin{pmatrix} a = \frac{20}{7} \end{pmatrix} (2.857 \dots)$ N2L R $\mathbf{\overline{N}}$: {their F_{r} }- $mg \sin 20^{\circ} = ma$ ft their F_{r} . Leading to $\mu \approx 0.674$ or 0.67	M1 A1ft A1 (5)
4.	(a) N2L $(6t-5)\mathbf{i} + (t^2 - 2t)\mathbf{j} = 0.5\mathbf{a}$ $\mathbf{a} = (12t-10)\mathbf{i} + (2t^2 - 4t)\mathbf{j}$ $\mathbf{v} = (6t^2 - 10t)\mathbf{i} + (\frac{2}{3}t^3 - 2t^2)\mathbf{j}$ (+C) ft their \mathbf{a}	M1 A1 M1 A1ft+A1ft
	$\mathbf{v} = (6t^2 - 10t + 1)\mathbf{i} + (\frac{2}{3}t^3 - 2t^2 - 4)\mathbf{j}$	A1 (6)
	(b) When $t = 3$, $\mathbf{v}_3 = 25\mathbf{i} - 4\mathbf{j}$ $-5\mathbf{i} + 12\mathbf{j} = 0.5(\mathbf{v} - (25\mathbf{i} - 4\mathbf{j}))$ ft their \mathbf{v}_3 $\mathbf{v} = 15\mathbf{i} + 20\mathbf{j}$ $ \mathbf{v} = \sqrt{(15^2 + 20^2)} = 25 \text{ (ms}^{-1})$ cso	M1 M1 A1ft A1 M1 A1 (6) [12]

Question Number	Scheme	Marks
5.	(a) P 0.5a R 1.5a W AR	
	$R(\uparrow)$ $R+P\cos\alpha = W$	M1 A1
	$M(A) \qquad P \times 2a = W \times 1.5a \cos \alpha$ $\left(P = \frac{3}{4}W \cos \alpha\right)$	M1 A1
	$R = W - P\cos\alpha = W - \frac{3}{4}W\cos^2\alpha$	DM1
	$=\frac{1}{4}\left(4-3\cos^2\alpha\right)W \bigstar \qquad \qquad$	A1 (6)
	(b) Using $\cos \alpha = \frac{2}{3}$, $R = \frac{2}{3}W$	B1
	$R(\rightarrow) \qquad \mu R = P \sin \alpha$ Leading to $\mu = \frac{3}{4} \sin \alpha$ $\left(\sin \alpha = \sqrt{\left(1 - \frac{4}{9}\right)} = \frac{\sqrt{5}}{3}\right)$	M1 A1
	$\mu = \frac{\sqrt{5}}{4} \qquad \text{awrt } 0.56$	DM1 A1 (5) [11]

Question Number			Scheme		Marks
6.	(a)	M(Oy)	$(8+k)m \times 6.4 = 5m \times 8 + km \times 8$ $1.6k = 11.2 \implies k = 7 $	CSO	M1 A1 DM1 A1 (4)
	(b)	M(Oy)	$27m\overline{x} = 12m \times 4 + 5m \times 8 + 7m \times 8$ $\overline{x} = \frac{16}{3}$	5.3 or better	M1 A1 A1
		M(Ox)	$27m\overline{y} = 12m \times 2.5 + 8m \times 5$ $\overline{y} = \frac{70}{27}$	2.6 or better	M1 A1 A1 (6)
	(c)		$\tan \theta = \frac{\overline{y}}{\overline{x}} = \frac{35}{72}$ $\theta \approx 26^{\circ}$	awrt 25.9 °	M1 A1ft A1 (3) [13]

Question Number		Scheme	Marks
7.	(a) (↓)	$u_y = 25 \sin 30^\circ (= 12.5)$ $12 = 12.5t + 4.9t^2$ -1 each error Leading to $t = 0.743$, 0.74	B1 M1 A2 (1, 0) A1 (5)
	(b) (\rightarrow)	$u_x = 25\cos 30^\circ \left(=\frac{25\sqrt{3}}{2} \approx 21.65\right)$	B1
		$OB = 25 \cos 30^{\circ} \times t \ (\approx 16.094\ 58)$ ft their (a) $TB \approx 1.1 \ (m)$ awrt 1.09	M1 A1ft A1 (4)
	(c) (\rightarrow)	$15 = u_x \times t \Longrightarrow t = \frac{15}{u_x} \left(=\frac{2\sqrt{3}}{5} \approx 0.693 \text{ or } 0.69\right)$	M1 A1
	either	(\downarrow) $v_y = 12.5 + 9.8t \ (\approx 19.2896)$	M1
		$V^{2} = u_{x}^{2} + v_{y}^{2} (\approx 840.840)$	
		$V \approx 29 (\mathrm{ms}^{-1})$, 29.0	M1 A1 (5) [14]
	or	$ \begin{pmatrix} \downarrow \end{pmatrix} \qquad s_y = 12.5t + 4.9t^2 \ (\approx 11.0) \\ \frac{1}{2}m \times 25^2 + mg \times s_y = \frac{1}{2}mv^2 $	M1
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1A1

June 2008 6679 Mechanics M3 Mark Scheme

Question Number	Scheme	Marks
Q1(a)	• EPE stored = $\frac{1}{2} \frac{\lambda}{L} \left(\frac{1}{2}L\right)^2 \left(=\frac{\lambda L}{8}\right)$	B1
	KE gained = $\frac{1}{2}m 2gL$ (= mgL) EPE = KE $\Rightarrow \frac{\lambda L}{8}$ = mgL i.e. $\lambda = 8mg^*$	B1 M1A1cso (4)
(b)	EPE = GPE + KE	M1
	$\frac{1}{2} \frac{8mg}{L} \left(\frac{1}{2}L\right)^2 = \frac{8mgL}{8} = mg\frac{L}{2} + \frac{1}{2}mu^2$	A1A1
	$\frac{mgL}{2} = \frac{m}{2}u^2 \therefore u = \sqrt{gL}$	M1A1 (5) 9 Marks

Orrentian	Scheme	Maulas
Question Number		Marks
Q2 (a)	0	
	A B	
	$T = 3 = \frac{2\pi}{\omega} \therefore \omega = \frac{2\pi}{3}$ $u^2 = \omega^2 \left(a^2 - x^2\right) ; a = 0.12 , u^2 = a^2 \; \omega^2 , u = 0.12 \times \omega$	M1A1
	$u^{2} = \omega^{2} (a^{2} - x^{2})$; $a = 0.12$, $u^{2} = a^{2} \omega^{2}$, $u = 0.12 \times \omega$	M1
	$= 0.251 \text{ ms}^{-1} (0.25 \text{ ms}^{-1})$	A1 (4)
(b)	Time from $O \rightarrow A \rightarrow O = 1.5$ s $\therefore t = 0.5$	B1
	$x = a \sin \omega t \qquad \Rightarrow OP = 0.12 \sin\left(\frac{\pi}{3}\right)$	
	$x = u \sin \omega \qquad \Rightarrow \cos (3)$	M1A1
	Distance from <i>B</i> is $0.12 - OP = 0.12 - 0.104 = 0.016m$	M1A1 (5)
(c)	$v^2 = \omega^2 \left(a^2 - x^2 \right)$	M1
	$v = \frac{2\pi}{3} \sqrt{0.12^2 - 0.104^2} = \frac{2\pi}{3} \times 0.0598 = 0.13 \text{ ms}^{-1}$	A1 (2)
		11 Marks

Question Number	Scheme	Marks
Q4 (a)		
	Mass $a^3 \frac{2}{3} \pi \times :$ 216 8 208 27 1 26	M1A1
	C of M from O: $\frac{3}{8} \times 6a$ $\frac{3}{8} \times 2a$ \overline{x} Use of $\frac{3}{8}r$	M1
	Moment : $216 \times \frac{6a \times 3}{8} = 8 \times \frac{2a \times 3}{8} + 208\overline{x}$	M1
	$\bar{x} = \frac{480a}{208} = \frac{30a}{13} *$	A1 cso (5)
(b)	+ = S	D1
	Mass $\pi a^3 \times := \frac{416}{3} + 24 = \frac{488}{3}$	B1 B1
	C of M: $\frac{30}{13}a + 9a = \overline{y}$	M1
	Moments : $320a + 216a = \frac{488}{3}\overline{y}$	A1 cso
	$\int_{\partial \partial a} y_{2a-\bar{g}} \overline{y} = \frac{201}{61}a *$	(4)
(c)	$12a - \frac{201}{61}a$	M1
	$\tan \theta = \frac{2a}{12a - \frac{201}{61}a} \qquad \qquad \tan \theta = \frac{2a}{\dots}$	M1
	$\theta = 12.93$	A1
	so critical angle = 12.93 \therefore if $\theta = 12^{\circ}$ it will <u>NOT</u> topple.	A1
		(4) 13 marks
	86	

Question Number	Scheme	Marks
Q5(a)	$\frac{1}{2}mv^{2} = mga\cos\theta$ $v^{2} = 2ga\cos\theta$	M1A1
	$F = ma \qquad \checkmark T - mg \cos \theta = \frac{mv^2}{a}$	M1A1
	Sub for $\frac{v^2}{a}$: $T = mg \cos \theta + 2mg \cos \theta$: $\theta = 60$ \therefore $T = \frac{3}{2} mg$	
		(6)
(b)	Speed of <i>P</i> before impact = $\sqrt{2ga}$	B1
	$ \begin{array}{cccc} \rightarrow \sqrt{2ga} & \rightarrow 0 & \rightarrow u \\ \text{PCLM}: & \bullet & \rightarrow & \bullet \\ \text{m} & 3\text{m} & 4\text{m} \end{array} \qquad \therefore u = & \frac{\sqrt{2ga}}{4} = \sqrt{\frac{ga}{8}} * \\ \end{array} $	M1A1cso
(c) (i)		(3)
	At $A v = 0$ so conservation of energy gives: At $A v = 0$ $\frac{1}{2} 4mu^2 = 4m ga (1 - \cos \theta)$	M1A1
	A $\frac{ga}{16} = ga (1 - \cos \theta)$	M1
	$\cos\theta = \frac{15}{16}$, $\theta = 20^{\circ}$	A1
(ii)	At $A = 4mg\cos\theta = \frac{15mg}{4}$ (accept 3.75mg)	M1A1 (6) 15 Marks

Question Number	Scheme	Marks
Q6 (a)	$F = ma (\rightarrow) \frac{3}{(x+1)^3} = 0.5a = 0.5 v \frac{dv}{dx}$	M1A1
	$\int \frac{3}{(x+1)^3} dx = 0.5 \int v dv$ Separate and \int	M1
	$-\frac{3}{2(x+1)^2} = \frac{1}{4} v^2 (+ c)$	A1
	$x = 0, v = 0 \implies c' = -\frac{3}{2}$ \therefore $v^2 = 6\left(1 - \frac{1}{(x+1)^2}\right) *$	M1A1 cso (6)
(b)	$\forall x v^2 < 6 \therefore v < \sqrt{6} (\because (x+1)^2 \text{ always} > 0)$	B1 (1)
(c)	$v = \frac{dx}{dt} = \frac{\sqrt{6}\sqrt{(x+1)^2 - 1}}{x+1}$ $\int \frac{x+1}{\sqrt{(x+1)^2 - 1}} dx = \sqrt{6} \int dt$	- M1
	$\int \frac{x+1}{\sqrt{(x+1)^2 - 1}} dx = \sqrt{6} \int dt$	_ M1
	$\sqrt{(x+1)^2 - 1} = \sqrt{6} t + c'$	M1 A1
	$t = 0, x = 0 \implies c' = 0$	M1
	$t = 2 \implies (x+1)^2 - 1 = (2\sqrt{6})^2$	- M1
	$(x+1)^2 = 25 \implies x=4$ (c' need not have been found)	A1 cao
		(7)
		14 Marks

June 2008 6680 Mechanics M4 Mark Scheme

Question Number	Scheme	Marks
1.	$\mathcal{Q}\mathbf{V}_{P} = \mathbf{V}_{\mathcal{Q}} - \mathbf{V}_{P} = (3\mathbf{i} + 7\mathbf{j}) - (5\mathbf{i} - 4\mathbf{j})$ $= (-2\mathbf{i} + 11\mathbf{j})$	M1 A1
	$\tan \theta = \frac{11}{2} \Longrightarrow \theta = 79.69^0$	M1 A1
	Bearing is 350°	A1 5
2.	$2m(2\mathbf{i} - 2\mathbf{j}) + m(-3\mathbf{i} - \mathbf{j}) = 2m(\mathbf{i} - 3\mathbf{j}) + m\mathbf{v}$ $(\mathbf{i} - 5\mathbf{j}) = (2\mathbf{i} - 6\mathbf{j}) + \mathbf{v}$	M1 A1
	$(\mathbf{i} \cdot \mathbf{i} \cdot \mathbf{j}) = \mathbf{v}$	A1
	$ \mathbf{v} = \sqrt{(-1)^2 + 1^2} = \sqrt{2} \text{ m s}^{-1}$ cwo	DM1 A1 5
3.	$mg - mkv = m\frac{\mathrm{d}v}{\mathrm{d}t}$	M1* A1 A1
	$\int \mathrm{d}t = \int \frac{\mathrm{d}v}{g - kv}$	DM1*
	$t = -\frac{1}{k}\ln(g - kv) + c$	Alcao
	$t = 0, v = u \Longrightarrow c = \frac{1}{k} \ln(g - ku)$	M1†
	$T = \frac{1}{k}\ln(g - ku) - \frac{1}{k}\ln(g - 2ku)$	DM1†
	$=\frac{1}{k}\ln\left(\frac{g-ku}{g-2ku}\right)$	A1 8

Question Number	Scheme	Marks
4.	$u\cos 2\theta = v\cos \theta$	M1 A1 M1 A1
	$\frac{3}{8}u\sin^2\theta = v\sin^2\theta$	
	$3\tan 2\theta = 8\tan \theta$	M1
	$\frac{6\tan\theta}{1-\tan^2\theta} = 8\tan\theta$	M1
	$\tan^2 \theta = \frac{1}{4} (\tan \theta \neq 0)$	
	$\tan \theta = \frac{1}{2}$	M1 A1 8
5.(a)	$-T - \frac{1}{2}mg - 2mv\sqrt{\frac{g}{l}} = m\ddot{x}$	M1 A3,2,1,0
	$\frac{-mgx}{l} - \frac{1}{2}mg - 2m\dot{x}\sqrt{\frac{g}{l}} = m\ddot{x}$	M1
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\omega \frac{\mathrm{d}x}{\mathrm{d}t} + \omega^2 x = -0.5g (\mathrm{AG})$	A1 (6)
(b)	$u^2 + 2\omega u + \omega^2 = 0 \Longrightarrow u = \omega$ (twice)	
	$u^{2} + 2\omega u + \omega^{2} = 0 \implies u = \omega \text{ (twice)}$ CF is $x = e^{-\omega t} (At + B)$	B1
	PI is $x = -\frac{1}{2}l (-\frac{g}{2m^2})$	
	GS is $x = e^{-\omega t} (At + B) - \frac{1}{2}l$	M1
	$t = 0, x = 0 \Longrightarrow B = \frac{1}{2}l (\frac{g}{2\omega^2})$	M1
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\omega e^{-\omega t} \left(At + B\right) + A e^{-\omega t}$	M1
		M1
	$t = 0, \frac{\mathrm{d}x}{\mathrm{d}t} = \sqrt{gl} = \omega l \Longrightarrow A = \frac{3}{2}\omega l \left(=\frac{3\sqrt{gl}}{2}\right)\left(=\sqrt{gl} + \frac{0.5g}{\omega}\right)$	A1 (6)
	so $x = e^{-\omega t} \left(\frac{3}{2}\omega lt + \frac{1}{2}l\right) - \frac{1}{2}l = \frac{1}{2}le^{-\omega t} \left(3\omega t + 1\right) - \frac{1}{2}l$	
(c)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 0 \Longrightarrow -\omega \mathrm{e}^{-\omega t} (At + B) + A \mathrm{e}^{-\omega t} = 0$	
		M1
	$\Rightarrow t = \frac{2}{3\omega}$	M1 A1 (3)
		15

(c) $ \begin{array}{c} 1 & dx \\ 200 \frac{d^2x}{dt^2} + 2x = 0 \\ \frac{d^2x}{dt^2} + \frac{x}{100} = 0 \\ \frac{d^2x}{dt^2} + \frac{x}{100} = 0 \\ \frac{d^2x}{dt^2} + \frac{x}{100} = 0 \\ \frac{dx}{dt^2} + \frac{1}{100} = 0 \\ \frac{dx}{dt^2} + \frac{1}{10} + B\cos\frac{t}{10} \\ x = 4\sin\frac{t}{10} + B\cos\frac{t}{10} \\ x = 0, x = 0 \Rightarrow B = 0 \\ \frac{dx}{dt} = \frac{A}{10}\cos\frac{t}{10} \\ \frac{dx}{dt} = \frac{A}{10}\cos\frac{t}{10} \\ \frac{dx}{dt} = 5 \\ \frac{dx}{dt} = 50 \\ \frac{dx}{dt} = 50 \\ \frac{dx}{dt} = 50 \\ \frac{dx}{dt} = 30; 30 = 50\sin\frac{t}{10} \\ x = 30; 30 = 50\sin\frac{t}{10} \\ \frac{dx}{dt} = 10\sin^{-1}(\frac{3}{2}) = 6.44 \text{ s} \end{array} $		M1	v $\sqrt{\frac{5}{100000000000000000000000000000000000$	6.(a)
(c) $200 \frac{d^2x}{dt^2} + 2x = 0$ $\frac{d^2x}{dt^2} + \frac{x}{100} = 0 *$ Aux eque: $m^2 + \frac{1}{100} = 0$ $\Rightarrow m = \pm \frac{i}{10}$ A1 $x = A \sin \frac{t}{10} + B \cos \frac{t}{10}$ A1 $x = A \sin \frac{t}{10} + B \cos \frac{t}{10}$ A1 $t = 0, x = 0 \Rightarrow B = 0$ $\frac{dx}{dt} = \frac{A}{10} \cos \frac{t}{10}$ M1 $t = 0, x = 0 \Rightarrow v = \frac{dx}{dt} = 5$ $\Rightarrow 5 = \frac{A}{10} \Rightarrow A = 50$ $\Rightarrow x = 50 \sin \frac{t}{10}$ A1 $x = 30: 30 = 50 \sin \frac{t}{10}$ $\Rightarrow t = 10 \sin^{-1}(\frac{3}{2}) = 6.44 \text{ s}$	(3)		$V + (\frac{10}{10}) = 3$	
Aux equn: $m^2 + \frac{1}{100} = 0$ $\Rightarrow m = \pm \frac{i}{10}$ $x = A \sin \frac{t}{10} + B \cos \frac{t}{10}$ $t = 0, x = 0 \Rightarrow B = 0$ $\frac{dx}{dt} = \frac{A}{10} \cos \frac{t}{10}$ $t = 0, x = 0 \Rightarrow v = \frac{dx}{dt} = 5$ $\Rightarrow 5 = \frac{A}{10} \Rightarrow A = 50$ $\Rightarrow x = 50 \sin \frac{t}{10}$ $x = 30$: $30 = 50 \sin \frac{t}{10}$ $\Rightarrow t = 10 \sin^{-1}(\frac{3}{2}) = 6.44$ s			$200\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2x = 0$	(b)
$x = A \sin \frac{t}{10} + B \cos \frac{t}{10}$ $t = 0, x = 0 \Rightarrow B = 0$ $\frac{dx}{dt} = \frac{A}{10} \cos \frac{t}{10}$ $t = 0, x = 0 \Rightarrow v = \frac{dx}{dt} = 5$ $\Rightarrow 5 = \frac{A}{10} \Rightarrow A = 50$ $\Rightarrow x = 50 \sin \frac{t}{10}$ $x = 30: 30 = 50 \sin \frac{t}{10}$ $\Rightarrow t = 10 \sin^{-1}(\frac{3}{2}) = 6.44 \text{ s}$		M1		(c)
$t = 0, x = 0 \Rightarrow B = 0$ $\frac{dx}{dt} = \frac{A}{10} \cos \frac{t}{10}$ M1 $t = 0, x = 0 \Rightarrow v = \frac{dx}{dt} = 5$ $\Rightarrow 5 = \frac{A}{10} \Rightarrow A = 50$ $\Rightarrow x = 50 \sin \frac{t}{10}$ A1 $x = 30: 30 = 50 \sin \frac{t}{10}$ $\Rightarrow t = 10 \sin^{-1}(\frac{3}{-}) = 6.44 \text{ s}$		A1	$\Rightarrow m = \pm \frac{i}{10}$	
$\frac{dx}{dt} = \frac{A}{10} \cos \frac{t}{10}$ $t = 0, x = 0 \Rightarrow v = \frac{dx}{dt} = 5$ $\Rightarrow 5 = \frac{A}{10} \Rightarrow A = 50$ $\Rightarrow x = 50 \sin \frac{t}{10}$ $x = 30: 30 = 50 \sin \frac{t}{10}$ $\Rightarrow t = 10 \sin^{-1}(\frac{3}{2}) = 6.44 \text{ s}$		A1	$x = A\sin\frac{t}{10} + B\cos\frac{t}{10}$	
$t = 0, x = 0 \Rightarrow v = \frac{dx}{dt} = 5$ $\Rightarrow 5 = \frac{A}{10} \Rightarrow A = 50$ $\Rightarrow x = 50 \sin \frac{t}{10}$ $x = 30: 30 = 50 \sin \frac{t}{10}$ $\Rightarrow t = 10 \sin^{-1}(\frac{3}{2}) = 6.44 \text{ s}$		B1		
$\Rightarrow 5 = \frac{A}{10} \Rightarrow A = 50$ $\Rightarrow x = 50 \sin \frac{t}{10}$ $x = 30: 30 = 50 \sin \frac{t}{10}$ $\Rightarrow t = 10 \sin^{-1}(\frac{3}{10}) = 6.44 \text{ s}$ M1 A1		M1		
$\Rightarrow x = 50 \sin \frac{t}{10}$ $x = 30: 30 = 50 \sin \frac{t}{10}$ $\Rightarrow t = 10 \sin^{-1}(\frac{3}{2}) = 6.44 \text{ s}$		N 41		
$x = 30; 30 = 50 \sin \frac{t}{10}$ $\Rightarrow t = 10 \sin^{-1}(\frac{3}{2}) = 6.44 \text{ s}$		MI		
$\Rightarrow t = 10 \sin^{-1}(\frac{3}{2}) = 6.44 \text{ s}$		A1		
$\Rightarrow t = 10\sin^{-1}(\frac{3}{5}) = 6.44 \text{ s}$ M1A				
	A1 (9)	M1A1	$\Rightarrow t = 10\sin^{-1}(\frac{3}{5}) = 6.44 \text{ s}$	
	16	1		

7.(a) (b)	PE of rod = $-kMga\sin 2\theta$ $BP = 2x2a\sin\theta = 4a\sin\theta$ PE of mass = $-Mg(6a - 4a\sin\theta)$ $V = -Mg(6a - 4a\sin\theta) - kMga\sin 2\theta$ $= Mga(4\sin\theta - k\sin 2\theta) + \text{ constant}$ * $\frac{dV}{d\theta} = Mga(4\cos\theta - 2k\cos 2\theta)$ so, $4x\frac{3}{4} - 2k(2(\frac{3}{4})^2 - 1) = 0$ $\Rightarrow k = 12$	B1 M1 A1 M1 A1 (5) M1 A1 M1 M1 A1
(c)	$4\cos\theta - 24(2\cos^2\theta - 1) = 0$ $12\cos^2\theta - \cos\theta - 6 = 0$ $(4\cos\theta - 3)(3\cos\theta + 2) = 0$ $\cos\theta = -\frac{2}{3}$	(5) M1 D M1 A1 (3)
(d)	$\frac{d^2V}{d\theta^2} = (Mga)(-4\sin\theta + 4k\sin 2\theta)$ when $\cos\theta = \frac{3}{4}, \frac{d^2V}{d\theta^2} = (Mga) \times 44.97 \Rightarrow$ stable when $\cos\theta = \frac{-2}{3}, \frac{d^2V}{d\theta^2} = (Mga) \times -50.68 \Rightarrow$ unstable	M1 A1 M1 A1 A1 (5) 18

June 2008 6681 Mechanics M5 Mark Scheme

Question Number	Scheme	Marks
1.	$\mathbf{d} = (7\mathbf{i} - 14\mathbf{j}) - (\mathbf{i} - 6\mathbf{j}) = (6\mathbf{i} - 8\mathbf{j})$	B1
	$(6k\mathbf{i} + k\mathbf{j}).(6\mathbf{i} - 8\mathbf{j}) = \frac{1}{2}x\frac{1}{2}x(2\sqrt{7})^2$	M1 A2 ft
	$28k = 7 \Longrightarrow k = \frac{1}{4}$	D M1
	$\Rightarrow \mathbf{P} = \frac{3}{2}\mathbf{i} + \frac{1}{4}\mathbf{j}$	A1 6
2.	Aux Equn: $m^2 + 4m = 0 \Longrightarrow m = 0$ or -4	M1
	$\mathbf{r} = \mathbf{A} + \mathbf{B}\mathbf{e}^{-4t}$	
	$t = 0, \mathbf{r} = \mathbf{i} - \mathbf{j}$: $\mathbf{A} + \mathbf{B} = \mathbf{i} - \mathbf{j}$	A1 M1
	$\mathbf{v} = -\mathbf{4B}\mathbf{e}^{-4t}$	
	$t = 0, v = -8\mathbf{i} + 4\mathbf{j}: -4\mathbf{B} = -8\mathbf{i} + 4\mathbf{j}$	M1
	$\mathbf{B} = 2\mathbf{i} - \mathbf{j} \Longrightarrow \mathbf{A} = -\mathbf{i}$	A1 A1
	so, $\mathbf{r} = -\mathbf{i} + (2\mathbf{i} - \mathbf{j})\mathbf{e}^{-4t}$	A1 7
	$=(2e^{-4t}-1)\mathbf{i}-e^{-4t}\mathbf{j}$	
3.(a)	$\mathbf{R} = (-2\mathbf{i} + \mathbf{j} - \mathbf{k}) + (3\mathbf{i} - \mathbf{j} + 2\mathbf{k})$	M1
	= (i + k)	A1 (2)
(b)	$G + (5i + j - k) \times (i + k) = (i - j + k) \times (-2i + j - k) + (4i - j - 2k) \times (3i - j + 2k)$	M1 A2 ft
	G + (i - 6j - k) = (-j - k) + (-4i - 14j - k)	A3 ft
	$\mathbf{G} = (-5\mathbf{i} - 9\mathbf{j} - \mathbf{k})$	A1
	$ \mathbf{G} = \sqrt{(-5^2 + (-9)^2 + (-1)^2)} = \sqrt{107} \text{ Nm}$	M1 A1 (9)
		11

4. (a)	$-mg \delta t = (m + \delta m)(v + \delta v) + \delta m(U - v) - mv$	
	$-mg \delta t = (m + \delta m)(v + \delta v) + \delta m (e^{-v} v)^{-mv}$ $-mg \delta t = mv + m \delta v + v \delta m + U \delta m - v \delta m - mv$	M1 A2
		111 1 142
	$-mg = m \frac{\mathrm{d}v}{\mathrm{d}t} + U \frac{\mathrm{d}m}{\mathrm{d}t}$	A1
	$m = M_0 \left(1 - \frac{1}{2}t\right) \Rightarrow \frac{\mathrm{d}m}{\mathrm{d}t} = -\frac{1}{2}M_0$	
		B1
	$-M_0 g(1 - \frac{1}{2}t) = M_0 (1 - \frac{1}{2}t) \frac{\mathrm{d}v}{\mathrm{d}t} - \frac{1}{2} M_0 U$	
		M1
	$U - g(2 - t) = (2 - t) \frac{\mathrm{d}v}{\mathrm{d}t}$	
	$\frac{U}{(2-t)} - 9.8 = \frac{dv}{dt}$ *	
	(2-t) dt	A1 (7)
(b)	$\frac{\mathrm{d}v}{\mathrm{d}t} > 0$ when $t = 0 \Rightarrow \frac{U}{2} - 9.8 > 0$	M1
	$dt \qquad 2 \Rightarrow U > 19.6 *$	A1 (2)
(c)	$v = \int \frac{U}{(2-t)} - 9.8 \mathrm{d}t$	M1
	$= -U \ln(2-t) - 9.8t + C$	A1
	$t = 0, v = 0$: $0 = -U\ln 2 + C \Longrightarrow C = U\ln 2$	M1
	so, $v = U \ln \frac{2}{(2-t)} - 9.8t$	
	(2-t) $t = 1: v = U \ln 2 - 9.8$	M1 A1 (5)
	$i = 1$. $v = 0$ m2 γ .0	
		14

Question Number	Scheme	Marks
5.(a)	$I = \frac{1}{3}m(9a)^{2} + \frac{1}{2}2ma^{2} + 2m(9a)^{2}$ $= 27ma^{2} + ma^{2} + 162ma^{2}$	M1 A1 A1
	$=190ma^2$	A1* (4)
(b)	M(<i>L</i>),	
	$mg\frac{9a}{2}\sin\theta + mg9a\sin\theta = -190ma^2\ddot{\theta}$	M1 A2
	$\ddot{\theta} = -\frac{9g}{76a}\sin\theta$ For small θ , $\sin\theta \approx \theta$,	M1
	$\Rightarrow \ddot{\theta} = -\frac{9g}{76a}\theta$ so S.H.M.	A1
	$\text{Period} = 2\pi \sqrt{\frac{76a}{9g}} = \frac{4\pi}{3} \sqrt{\frac{19a}{g}}$	DM1 A1
		(7)
6.	$\delta m = \pi a^2 \delta x \cdot \frac{M}{\pi a^2 h} = \frac{M \delta x}{h}$	M1 A1
	$\delta I = \frac{1}{4}\delta m.a^2 + \delta m.x^2$	M1 A1
	$=\frac{M}{4h}(a^2+4x^2)\delta x$	M1 A1
	$I = \int_{0}^{h} \frac{M}{4h} (a^{2} + 4x^{2}) dx$	M1 A1
	$=\frac{M}{4h}\left[a^2x+\frac{4}{3}x^3\right]_0^h$	M1
	$=\frac{M}{4}(a^2+\frac{4}{3}h^2)$	
	$=\frac{M}{12}(3a^2+4h^2)$	A1 10

7.(a)

$$x + \frac{\partial}{\partial 2ng} + \frac{1}{2} 24ma^2 \partial^2 = 2mg.3a(1 - \cos \theta) + \frac{1}{2} 24ma^2 \partial^2 = 2mg.3a(1 - \cos \theta) + \frac{1}{2} 24ma^2 \partial^2 = g(1 - \cos \theta) + \frac{1}{2} + \frac{1}{2} 24ma^2 \partial^2 = g(1 - \cos \theta) + \frac{1}{2} + \frac{1$$

June 2008 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marks	5
Q1 (a)	0.95 Positive Test		
	0.02 Disease (0.05) Negative Test		
	(0.98) No Disease 0.03 Positive Test		
	(0.97) Negative Test Tree without probabilities or labels	M1	
	0.02(Disease), 0.95(Positive) on correct branche	A1	
	0.03(Positive) on correct branch.	A1	[3]
(b)	P(Positive Test) = $0.02 \times 0.95 + 0.98 \times 0.03$	M1A1ft	נין
	= 0.0484	A1	[3]
(c)	P(Do not have disease Postive test) = $\frac{0.98 \times 0.03}{0.0484}$ = 0.607438 awrt 0.607	M1 A1	
(d)	Test not very useful OR High probability of not having the disease for a person with a positive test	B1	[2]
		Total 9	[1]
	Notes: (a) M1:All 6 branches. Bracketed probabilities not required. (b) M1 for sum of two products, at least one correct from their diagram A1ft follows from the probabilities on their tree A1 for correct answer only or $\frac{121}{2500}$ (c) M1 for conditional probability with numerator following from their tree and denominator their answer to part (b). A1 also for $\frac{147}{242}$.		

Question Number	Scheme	Mark	S
Q2 (a) (b)	50 $Q_1 = 45$ $Q_2 = 50.5$ ONLY $Q_3 = 63$	B1 B1 B1 B1	[1]
(c)	Mean = $\frac{1469}{28}$ = 52.464286 awrt 52.5 Sd = $\sqrt{\frac{81213}{28} - \left(\frac{1469}{28}\right)^2}$ = 12.164 or 12.387216for divisor <i>n</i> -1 awrt 12.2 or 12.4	M1A1 M1 A1	
(d) (e)	$\frac{52.4650}{sd} = \text{awrt } 0.20 \text{ or } 0.21$ 1. mode/median/mean Balmoral>mode/median/mean Abbey	M1A1	[4] [2]
	 2. Balmoral sd < Abbey sd or similar sd or correct comment from their values, Balmoral range<abbey range,<br="">Balmoral IQR>Abbey IQR or similar IQR</abbey> 3. Balmoral positive skew or almost symmetrical AND Abbey negative skew, Balmoral is less skew than Abbey or correct comment from their value in (d) 4. Balmoral residents generally older than Abbey residents or equivalent. Only one comment of each type max 3 marks 	B1B1B1	
	Notes: (c) M1 for their 1469 between 1300 and 1600, divided by 28, A1 for awrt 52.5 Please note this is B1B1 on Epen M1 use of correct formula including sq root A1 awrt 12.2 or 12.4 Correct answers with no working award full marks. (d) M1 for their values correctly substituted A1 Accept 0.2 as a special case of awrt 0.20 with 0 missing (e) Technical terms required in correct context in lines 1 to 3 e.g. 'average' and 'spread' B0 1 correct comment B1B0B0 2 correct comments B1B1B1	Total 13	[3]

Question Number	Scheme	Marks
Q3 (a)	$-1 \times p + 1 \times 0.2 + 2 \times 0.15 + 3 \times 0.15 = 0.55$ p = 0.4 p + q + 0.2 + 0.15 + 0.15 = 1 q = 0.1	M1dM1 A1 M1 A1 [5]
(b)	$Var(X) = (-1)^{2} \times p + 1^{2} \times 0.2 + 2^{2} \times 0.15 + 3^{2} \times 0.15, -0.55^{2}$ = 2.55 - 0.3025 = 2.2475 awrt 2.25	M1A1,M1 A1 [4]
(c)	E(2X-4) = 2E(X)-4 = -2.9	M1 A1 [2] Total 11
	 (a) M1 for at least 2 correct terms on LHS Division by constant e.g. 5 then M0 dM1 dependent on first M1 for equate to 0.55 and attempt to solve. Award M1M1A1 for p=0.4 with no working M1 for adding probabilities and equating to 1. All terms or equivalent required e.g. p+q=0.5 Award M1A1 for q=0.1 with no working (b) M1 attempting E(X²) with at least 2 correct terms A1 for fully correct expression or 2.55 Division by constant at any point e.g. 5 then M0 M1 for subtracting their mean squared A1 for awrt 2.25 Award awrt 2.25 only with no working then 4 marks (c) M1 for 2x(their mean) -4 Award 2 marks for -2.9 with no working 	

Question Number	Scheme		Mark	s
Q4 (a)	$S_{tt} = 10922.81 - \frac{401.3^2}{15} = 186.6973$	awrt 187	M1A1	
	$S_{vv} = 42.3356 - \frac{25.08^2}{15} = 0.40184$	awrt 0.402	A1	
	$S_{tv} = 677.971 - \frac{401.3 \times 25.08}{15} = 6.9974$	awrt 7.00	A1	[4]
(b)	$r = \frac{6.9974}{\sqrt{186.6973 \times 0.40184}}$ = 0.807869	awrt 0.808	M1A1ft A1	[3]
(c)	<i>t</i> is the explanatory variable as we can control temperature but not frequency of noise or equivalent comment		B1 B1	[2]
(d)	High value of r or r close to 1 or Strong correlation		B1	[1]
(e)	$b = \frac{6.9974}{186.6973} = 0.03748$	awrt 0.0375	M1A1	
	$a = \frac{25.08}{15} - b \times \frac{401.3}{15} = 0.6692874$	awrt 0.669	M1A1	[4]
(f)	<i>t</i> = 19, <i>v</i> =0.6692874+0.03748x19=1.381406	awrt 1.4	B1 Total 15	[1]
	Notes:(a) M1 any one attempt at a correct use of a formula.Award full marks for correct answers with no working.Epen order of awarding marks as above.(b) M1 for correct formula and attempt to useA1ft for their values from part (a)NB Special Case for $\frac{677.971}{\sqrt{10922.81 \times 42.3356}}$ M1A0A1 awrt 0.808Award 3 marks for awrt 0.808 with no working(c) Marks are independent. Second mark requires some interpretation be statements such as 'temperature effects / influences pitch or noiB1 'temperature is being changed' BUT B0 for 'temperature is changin (e) M1 their values the right way upA1 awrt 0.0375M1 attempt to use correct formula with their value of b A1 awrt 0.669(f) awrt 1.4	se'		

Question Number	Scheme	
Q5 (a)	A 30 30 30 12 10 10 25 10 10 20 C 3 closed intersecting curves with labels 100 100,30 12,10,3,25 Box	M1 A1 A1 B1 [4]
(b)	P(Substance C) = $\frac{100 + 100 + 10 + 25}{300} = \frac{235}{300} = \frac{47}{60}$ or exact equivalent	M1A1ft [2]
(c)	P(All 3 A) = $\frac{10}{30 + 3 + 10 + 100} = \frac{10}{143}$ or exact equivalent	[2] M1A1ft [2]
(d)	P(Universal donor) = $\frac{20}{300} = \frac{1}{15}$ or exact equivalent	M1A1 cao [2] Total 10
	Notes: (a) 20 not required. Fractions and exact equivalent decimals or percentages. (b) M1 For adding their positive values in C and finding a probability A1ft for correct answer or answer from their working (c) M1 their 10 divided by their sum of values in A A1ft for correct answer or answer from their working (d) M1 for 'their 20' divided by 300 A1 correct answer only	

Question Number	Scheme			Marks	
Q6 (a)	F(4)=1 (4+k) ² = 25 k = 1 as k > 0				M1 A1 [2]
(b)	P(X=x)	$\frac{2}{9}$	$\frac{3}{7}$	$\frac{4}{9}$	[2] B1ftB1B1 [3] Total 5
	Notes: (a) M1 for use of F(4) = F(2)+F(3)+F(4)=1 M0 A1 for <i>k</i> =1 and ignore <i>A</i> (b) B1ft follow through B1 correct answer only B1 correct answer only	k=-9 their k for P(X=2) eitheor exact equivalent			

Question Number	Scheme	Marks
Q7 (a)	$z = \frac{53 - 50}{2}$ P(X>53)=1-P(Z<1.5) =1-0.9332 =0.0668 Attempt to standardise 1-probability required can be implied	M1 B1 A1 [3]
(b)	$P(X \le x_0) = 0.01$ $\frac{x_0 - 50}{2} = -2.3263$ $x_0 = 45.3474$ awrt 45.3 or 45.4	M1 M1B1 M1A1 [5]
(c)	P(2 weigh more than 53kg and 1 less) = $3 \times 0.0668^2 (1 - 0.0668)$ = 0.012492487 awrt 0.012	B1M1A1ft A1 Total 12
	Notes: (a) M1 for using 53,50 and 2, either way around on numerator B1 1- any probability for mark A1 0.0668 cao (b) M1 can be implied or seen in a diagram or equivalent with correct use of 0.01 or 0.99 M1 for attempt to standardise with 50 and 2 numerator either way around B1 for ± 2.3263 M1 Equate expression with 50 and 2 to a <i>z</i> value to form an equation with consistent signs and attempt to solve A1 awrt 45.3 or 45.4 (c) B1 for 3, M1 $p^2(1-p)$ for any value of <i>p</i> A1ft for <i>p</i> is their answer to part (a) without 3 A1 awrt 0.012 or 0.0125	

June 2008 6684 Statistics S2 Mark Scheme

Question Number	Scheme	Marks
1(a)	E(X) = 5	B1 M1
	Var(X) = $\frac{1}{12}(10-0)^2$ or attempt to use $\int \frac{x^2}{10} dx - \mu^2$ = $\frac{100}{12} = \frac{25}{3} = 8\frac{1}{3} = 8.3$ awrt 8.33	A1
(b)	$P(X \le 2) = (2-0) \times \frac{1}{10} = \frac{1}{5} \text{ or } \frac{2}{10} \text{ or } 0.2$	(3) M1 A1 (2)
(c)	$\left(\frac{1}{5}\right)^5 = 0.00032 \text{ or } \frac{1}{3125} \text{ or } 3.2 \times 10^{-4} \text{ o.e.}$	M1 A1 (2)
(d)	P(X \ge 8) or P(X > 8) P(X \ge 8 X \ge 5) = $\frac{P(X \ge 8)}{P(X \ge 5)}$ = $\frac{2/10}{5/10}$	M1 M1
	$=\frac{2}{5}$	A1 (3)
	alternative remaining time ~ U[0,5] or U[5,10] $P(X \ge 3 \text{ or } 8) = \frac{2}{5}$	M1 M1 A1 (Total 10)

```
Notes
(a) B1 cao
  M1 using the correct formula \frac{(a-b)^2}{12} and subst in 10 or 0
      or for an attempt at the integration they must increase the power of x by 1 and
              subtract their E(X) squared.
   A1 cao
(b) M1 for P(X \le 2) or P(X < 2)
   A1 cao
(c) M1 (their b)<sup>5</sup>. If the answer is incorrect we must see this. No need to check with your
calculator
   A1 cao
(d) writing P(X \ge 8) (may use > sign). If they do not write P(X \ge 8) then it must be clear
from their working that they are finding it. 0.2 on its own with no working gets M0
   M1 For attempting to use a correct conditional probability.
        NB this is an A mark on EPEN
   A1 2/5
   Full marks for 2/5 on its own with no incorrect working
Alternative
M1 for P(X \ge 3) or P(X \ge 8) may use > sign
M1 using either U[0,5] or U[5,10]
A1 2/5
```

Question Number	Scheme	Marks
2	$\begin{array}{l} X \sim B(100, 0.58) \\ Y \sim N \ (58, 24.36) \end{array}$	B1 B1 B1
	$[P(X > 50) = P(X \ge 51)]$ using 50.5 or 51.5 or 49.5 or 48.5	M1
	$= P\left(z \ge \pm \left(\frac{50.5 - 58}{\sqrt{24.36}}\right)\right) \text{ standardising 50.5, 51, 51.5, 48.5, 49, 49.5 and their}$	M1
	μ and σ for M1 = P($z \ge -1.52$)	A1
	= 0.9357	A1
	$\frac{\text{alternative}}{X \sim B(100, 0.58)}$	(7)
	$Y \sim N (42, 24.36)$	B1 B1 B1
	$[P(X < 50) = P(X \le 49)]$ using 50.5 or 51.5 or 49.5 or 48.5	M1
	$= P\left(z \le \pm \left(\frac{49.5 - 42}{\sqrt{24.36}}\right)\right) \text{ standardising 50.5, 51, 51.5, 48.5, 49, 49.5 and their}$	M1 A1
	$\mu \text{ and } \sigma \text{ for } M1 = P(z \le 1.52)$	
	= 0.9357	A1
		(Total 7)

Notes The first 3 marks may be given if the following figures are seen in the standardisation formula :- 58 or 42, 24.36 or $\sqrt{24.36}$ or $\sqrt{24.4}$ or awrt 4.94. Otherwise B1 normal B1 58 or 42 B1 24.36 M1 using 50.5 or 51.5 or 49.5 or 48.5. ignore the direction of the inequality. M1 standardising 50.5, 51, 51.5, 48.5, 49, 49.5 and their μ and σ . They may use $\sqrt{24}$ or $\sqrt{24.36}$ or $\sqrt{24.4}$ or awrt 4.94 for σ or the $\sqrt{6}$ their variance. A1 ± 1.52. may be awarded for $\pm \left(\frac{50.5 - 58}{\sqrt{24.36}}\right)$ or $\pm \left(\frac{49.5 - 42}{\sqrt{24.36}}\right)$ o.e. A1 awrt 0.936

Question Number					Scheme						Mai	rks
3(a)	$X \sim \text{Po}(9)$ $P(X \le 3) =$	= 0 0212		m	nay be imp	plied by	calculatio	ons in part	a or b		M1	
	$P(X \ge 16) =$											
	$\operatorname{CR} X \leq 3;$	$\cup X \ge 1$	6								A1; A1	(3)
(b)	P(rejecting I	Ho) = 0.02	212 + 0.02	220							M1	
		= 0.04	132 or 0.0	0433							A1 cao	
												(2)
											Т	otal 5
	one A1 for X	415, 0.978 correct re $Z \le 3 \text{ or } X$ $Z \ge 16 \text{ or}$ dentify the p not accepted by the construction of the construction they have by the construction of the const	30, 0.9585 gion. < 4 cond X > 15 e critical r bt P(X \le 3) and 0.022 not got the smaller th	5, 0.9889, done c1 o regions at) etc gets 20 they ca le correct an 0.05)	,0.0111,0 or CR ins t the end a A0 an gain th numbers You may	.0062 or r tead of <i>X</i> and not ju ese marks they mus	nay be as st have th s regardle t be addir	sumed by tem as particular so of the original so of the original solution of the original soluti	at least et of their critical re- ues for th	gions eir		
	A1 awrt Special case If you see 0. award M1 A	.0432 / 0.0		0.1157	0.9585	0.9780	<u>0.9889</u> ng else w	0.9947	<u>0.9976</u> 1 – 0.043	2		

Question Number	Scheme	Mark	S
4(a)	<i>X</i> ~B(11000, 0.0005)	M1 A1	(2)
(b)	$E(X) = 11000 \times 0.0005 = 5.5$	B1	
	Var $(X) = 11000 \times 0.0005 \times (1 - 0.0005)$ = 5.49725	B1	(2)
(c)	X ~ Po (5.5)	M1 A1	
	$P(X \le 2) = 0.0884$	dM1 A1	(4)
		Tot	al 8
	Notes		
	(a) M1 for Binomial,A1 fully correctThese cannot be awarded unless seen in part a		
	(b)B1 cao B1 also allow 5.50, 5.497, 5.4973, do not allow 5.5		
	 (c) M1 for Poisson A1 for using Po (5.5) M1 this is dependent on the previous M mark. It is for attempting to find P(X ≤ 2) A1 awrt 0.0884 Correct answer with no working gets full marks 		
	Special case If they use normal approximation they could get M0 A0 M1 A0 if they use 2.5 in their standardisation.		
	NB exact binomial is 0.0883		

Question Number	Scheme	Mar	ks
5(a)	$X \sim B(15, 0.5)$	B1 B1	(2)
(b)	P (X=8) = P (X ≤ 8) – P(X ≤ 7) or $\left(\frac{15!}{8!7!}(p)^8(1-p)^7\right)$ = 0.6964 – 0.5	M1	(2)
	= 0.1964 awrt 0.196	A1	(2)
(c)	$P(X \ge 4) = 1 - P(X \le 3)$	M1	
	= 1 - 0.0176 = 0.9824	A1	(2)
(d)	$H_0: p=0.5$ $H_1: p>0.5$ $X \sim B(15, 0.5)$	B1 B1	
	$P(X \ge 13) = 1 - P(X \le 12) \qquad [P(X \ge 12) = 1 - 0.9824 = 0.0176] \text{att } P(X \ge 13) \\ = 1 - 0.9963 \\ = 0.0037 \qquad P(X \ge 13) = 1 - 0.9963 = 0.0037 \\ CR X \ge 13 \qquad \text{awrt } 0.0037 / CR X \ge 13$	M1 A1	
	$\begin{array}{ll} 0.0037 < 0.01 & 1\beta \geq 13 \\ \mbox{Reject } H_0 \mbox{ or it is significant or a correct statement in context from their values} \end{array}$		
	There is sufficient evidence at the 1% significance level that the coin is <u>biased in favour of</u> <u>heads</u> Or There is evidence that Sues belief is correct	M1 A1	(6)

Ν	otes

- (a) B1 for Binomial B1 for 15 and 0.5 must be in part a This need not be in the form written
- (b) M1 attempt to find P (X=8) any method. Any value of p A1 awrt 0.196 Answer only full marks
- (c) M1 for 1 P ($X \le 3$). A1 awrt 0.982
- (d) B1 for correct H₀. must use p or π
 B1 for correct H₁ must be one tail must use p or π
 M1 attempt to find P(X≥13) correctly. E.g. 1 P(X≤12)
 A1 correct probability or CR

To get the next 2 marks the null hypothesis must state or imply that (p) = 0.5

- M1 for correct statement based on their probability or critical region or a correct contextualised statement that implies that. not just 13 is in the critical region.
- A1 This depends on their M1 being awarded for rejecting H₀. Conclusion in context. Must use the words biased in favour of heads or biased against tails or sues belief is correct . NB this is a B mark on EPEN.

They may also attempt to find P(X < 13) = 0.9963 and compare with 0.99

Question Number		Scheme					
6(a)	Calls occur singly Calls occur at a constant rate Calls occur independently o		any two of the 3 only need calls once	B1 B1 (2)			
(b) (i)	$X \sim Po(4.5)$ P (X = 5) = P (X \leq 5) - P = 0.7029 - 0.53 = 0.1708	$(X \le 4)$	or seen in (i) or (ii)	M1 M1 A1 (3)			
(ii)	$P(X > 8) = 1 - P(X \le 8)$ = 1 - 0.9597 = 0.0403)		M1 A1 (2)			
(c)	Ho : $\lambda = 9$ ($\lambda = 18$) H1 : $\lambda > 9$ ($\lambda > 18$)	may	y use λor μ	B1			
	15) = $1 - 0.9261$ = 0.0739 0.0739 > 0.05 Accept H0. or it is not signifi	$[P(X \ge 14) = 1 - 0.9261 = 0.0739]$ $P(X \ge 15) = 1 - 0.9780 = 0.0220$ CR X \ge 15 14 \le 15 Figure 15 Figure 15 Figure 14 the number of calls per h	awrt 0.0739	B1 M1 A1 M1 A1 (6)			
	same reason. Award the first B1 if the Special case if they don't put (b) correct answers only sco	at in the word calls but write two correct re full marks ied by them using it in their calculation $\frac{e^{-\lambda}\lambda^5}{2}$	ect statements award B0B1	-			

(ii) M1 for $1 - P(X \le 8)$ A1 only awrt 0.0403

(c) B1 $\,$ both . Must be one tail test. They may use λ or μ and either 9 or 18 and match H0 and H1 $\,$

M1 Po (9) may be implied by them using it in their calculations. M1 attempt to find $P(X \ge 14)$ eg 1 - P(X < 13) or 1 - P(X < 14)A1 correct probability or CR

```
To get the next2 marks the null hypothesis must state or imply that (\lambda) = 9 or 18
```

M1 for a correct statement based on their probability or critical region or a correct contextualised statement that implies that.

A1. This depends on their M1 being awarded for accepting H0. Conclusion in context. Must have calls per hour has not increased. Or the rate of calls has not increased. Any statement that has the word calls in and implies the rate not increasing e.g. no evidence that the rate of calls handled has increased Saying the number of calls has not increased gains A0 as it does not imply rate NB this is an A mark on EPEN

They may also attempt to find P(X < 14) = 0.9261 and compare with 0.95

Question Number	Scheme		
7(a)	$\int_{0}^{1} \frac{1}{2} x dx = \left[\frac{1}{4} x^{2}\right]_{0}^{1} = \frac{1}{4} \qquad \text{oe}$	attempt to integrate both parts	M1
	$\int_{1}^{2} kx^{3} dx \left[\frac{1}{4} kx^{4} \right]_{1}^{2} = 4k - \frac{1}{4}k \text{oe}$	both answer correct	A1
	$\frac{\frac{1}{4} + 4k - \frac{1}{4}k = 1}{\frac{15k}{4} = \frac{3}{4}}$	adding two answers and putting = 1	dM1dep on previous M
	$\frac{1}{4} = \frac{1}{4}$ $k = \frac{1}{5}$ *		A1 (4)
(b)	$\int_0^1 \frac{1}{2} x^2 \mathrm{d}x = \left[\frac{1}{6} x^3\right]_0^1 = \frac{1}{6}$	attempt to integrate $xf(x)$ for one part	M1
	$\int_{1}^{2} \frac{1}{5} x^{4} dx = \left[\frac{1}{25} x^{5}\right]_{1}^{2} = \frac{32}{25} - \frac{1}{25}$ $= \frac{31}{25} \text{ or } 1.24$	1/6	A1 A1
(c)	$E(X) = \frac{1}{6} + \frac{31}{25}$ $= \frac{211}{150} = 1\frac{61}{150} = 1.40^{\circ}6$		A1 (4)
	$F(x) = \int_{0}^{x} \frac{1}{2}t dt (\text{for } 0 \le x \le 1)$ = $\frac{1}{4}x^{2}$ $F(x) = \int_{1}^{x} \frac{1}{5}t^{3} dt; + \int_{0}^{1} \frac{1}{2}t dt (\text{for } 1 < x \le 2)$ 0 and 1	ignore limits for M must use limit of 0 need limit of 1 and variable upper limit; need limit	M1 A1 M1; M1
	$=\frac{1}{20}x^4+\frac{1}{5}$		A1

	(0		
	$F(x) \begin{cases} 0 & x < 0 \\ \frac{1}{4}x^2 & 0 \le x \le 1 \\ \frac{1}{20}x^4 + \frac{1}{5} & 1 < x \le 2 \\ 1 & x > 2 \end{cases}$ middle pair ends		
	F(x) $\begin{cases} F(x) \\ \frac{1}{20}x^4 + \frac{1}{5} \\ 1 \le x \le 2 \end{cases}$ middle pair ends	B1 ft B1	
	$\begin{bmatrix} 20 & 0 \\ 1 & x > 2 \end{bmatrix}$		(7)
	F(m) = 0.5 either eq	M1	(')
(d)	$\frac{1}{20}m^4 + \frac{1}{5} = 0.5$ eq for their $1 \le x \le 2$	A1ft	
	20 5 $m = \sqrt[4]{6}$ or 1.57 or awrt 1.57	A1	(3)
	negative skew	B1	
(e)	This depends on the previous B1 being awarded. One of the following statements which must be compatible with negative skew and their figures. If they use mode then they must have found a value for it Mean < Median	dB1	(2)
	Mean < mode Mean < median (< mode) Median < mode Sketch of the pdf.		
	Notes (a) M1 for adding two integrals together =1, ignore limits A1 for correct integration, ignore limits M1 using correct limits A1 cso		
	(b) M1 attempting to use integral of x f(x)A1 correct two integrals added with limitsA1 correct integration ignore limitsA1 awrt 1.41		
	(c) M1 Att to integrate $\frac{1}{2}t$ (they need to increase the power by 1). Ignore limits for method mark		
	A1 $\frac{1}{4}x^2$ allow use of t. must have used/implied use of limit of 0. This must be on its own without anything else added		
	M1 att to integrate $\int_{1}^{x} \frac{1}{5} t^{3} dt$ and correct limits.		
	M1 $\int_0^1 \frac{1}{2} t dt$ + Att to integrate using limits 0 and 1. no need to see them put 0 in .		

they must add this to their $\int_{1}^{x} \frac{1}{5} t^{3} dt$. may be given if they add 1/4 Alternative method for these last two M marks M1 for att to $\int \frac{1}{5}t^3$ dt and putting + C M1 use of F(2) = 1 to find C A1 $\frac{1}{20}x^4 + \frac{1}{5}$ must be correct B1 middle pair followed through from their answers. condone them using < or \leq incorrectly they do not need to match up B1 end pairs. condone them using \leq or \leq . They do not need to match up NB if they show no working and just write down the distribution. If it is correct they get full marks. If it is incorrect then they cannot get marks for any incorrect part. So if $0 \le x \le 1$ is correct they can get M1 A1 otherwise M0 A0. if 3<x<4 is correct they can get M1 A1A1 otherwise M0 A0A0. you cannot award B1ft if they show no working unless the middle parts are correct. (d) M1 either of their $\frac{1}{4}x^2$ or $\frac{1}{20}x^4 + \frac{1}{5} = 0.5$ A1 for their F(X) = 0.5A1 cao If they add both their parts together and put = 0.5 they get M0 If they work out both parts separately and do not make the answer clear they can get M1 A1 A0 (e) B1 negative skew only B1 Dependent on getting the previous B1. their reason must follow through from their figures.

June 2008 6691 Statistics S3 Mark Scheme

Question number	Scheme		Marks
1. (a)	$\overline{x} = \left(\frac{6046}{36}\right) = 167.94$	awrt 168	B1
	$s^{2} = \frac{1016338 - 36 \times \overline{x}^{2}}{35}$		M1
	= 27.0253	awrt 27.0 (Accept 27)	A1 (3)
(b)	99% Confidence Interval is: $\overline{x} \pm 2.5758 \times \frac{5.1}{\sqrt{36}}$		M1A1ft
		2.5758	B1
	= (165.755, 170.133)	awrt (166,170)	A1 A1 (5)
			8 marks
(a)	M1 for a correct expression for s^2 , follow through the	eir mean, beware it is very "sen	sitive"
	$167.94 \rightarrow \frac{999.63.}{35} \rightarrow 28.56$		
	$167.9 \rightarrow \frac{1483.24}{35} \rightarrow 42.37$	These would all score M1A0	
	$168 \longrightarrow \frac{274}{35} \longrightarrow 7.82$		
	Use of 36 as the divisor (= 26.3) is M0A0		
(b)	M1 for substituting their values in $\overline{x} \pm z \times \frac{5.1 \text{ or } s}{\sqrt{36}}$ w		rom tables
	1 st A1 follow through their mean and their z (to 2dp) in 3	$\overline{x} \pm z \times \frac{5.1}{\sqrt{36}}$	
	Beware: $167.94 \pm 2.5758 \times \frac{5.1^2}{36} \rightarrow (166.07, 1)$	69.8) but scoresB1M0A0A0A	40
	Correct answer only in (b) scores 0/5		
	2 nd & 3 rd A marks depend upon 2.5758 and M mark.		

Question		Marks				
2.	$\frac{115 \times 70}{217} = 37.0967 \text{ or } \frac{1150}{31} \text{ (etc) } \frac{1265}{31}, \frac{1020}{31}, \frac{1122}{31}$					M1
	Expected (Obs)	Α	S	Н		
	Boy	37.1 (30)	37.1 (50)	40.8 (35)		
	Girl	32.9 (40)	32.9 (20)	36.2 (42)		
	I					A1A1
	H_0 : There is no assoc	iation between cou	rse and gender			
	H_1 : There is some ass	ociation between c	course and gender	(both)	B1
	$\sum \frac{\left(O-E\right)^2}{E} = \frac{\left(37.1\right)^2}{3^2}$	$\frac{(32.9-4)^2}{7.1} + \frac{(32.9-4)^2}{32.9}$	$\frac{(40)^2}{10} + \dots + \frac{(36.2 - 42)^2}{36.2}$	$(2)^{2}$		M1A1ft
	= 1.358 + 4.485 + 0.82	4 + 1.532 + 5.058	+ 0.929 = 14.189	awrt 14.2	A1	
	v = (3-1)(2-1) = 2,	$\chi_2^2(1\%) c$	ritical value is 9.210	(condone 9	9.21)	B1, B1ft
	Significant result or	reject null hypoth	nesis			M1
	There is evidence of an	association betwe	en course taken and g	gender		A1ft (11)
	[Correct answe	ers only score full 1	marks]			11 marks
ALT	$\sum \frac{O^2}{E} - N = \frac{30^2}{37.1} + \frac{30^2}{37$	$\frac{40^2}{32.9} + \dots + \frac{42^2}{36.2} - \frac{1}{36.2}$	217			M1A1ft
	1 st M1 for some use of	the $\frac{\text{row total} \times \text{col}}{\text{grand total}}$	l total al			
	1 st A1 for one correct	row or one correct	t column of expected	frequencies to neare	est inte	ger
	2 nd A1 for all expected	d frequencies corre	ect to awrt 1 dp (Allo	w exact fractions)		
			OK. Must mention co	ourses and gender at	least c	once.
		correlation" is B0 l				1.0
	2 nd M1 for an attempt 3 rd A1 follow through		itistic. At least one co cies for at least 3 expr		expect	ea treq.
	3^{rd} M1 for a correct st				ied by	comment)
	5 th A1 for a contextua					
	or assume that they we					0 1
	······································			,		

Question number	Scheme	Marks
3. (a)	(i) ↑ + (ii) ↑ +	(i) B1
(b)(i)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(ii) B1B1 (3) M1M1
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1A1
	$r_s = 1 - \frac{6 \times 10}{7 \times (49 - 1)} = 1 - \frac{5}{28} = \frac{23}{28}$ or awrt 0.821	M1A1 (6)
(ii)	$H_0: \rho = 0 \qquad H_1: \rho > 0 \qquad (Allow \ \rho_S) \qquad (H_1: \rho \neq 0 \text{ scores B0})$	B1,B1
	r_s 5% one tail critical value is 0.7143 B1	
	Significant result or reject null hypothesis	M1
	There is evidence of a (positive) correlation between the judges or the judges agree A1ft	(5)
		14 marks
(a) (i)		
(ii)	2^{nd} B1 for 4 or more points satisfying $-1 < r < 0$	
(b)(i)	3 rd B1 for 5 or more points of decreasing ranks not on a straight line 1 st M1 for attempting to rank one of the judges (at least 2 correct rankings)	
	2^{nd} M1 for ranking both (may be reversed) (at least 2 correct rankings)	
	3^{rd} M1 for attempting d^2 .	
	1^{st}A1 for $\sum d^2 = 10$	
	4^{th} M1 for correct use of the r_s formula	
(ii)	3^{rd} B1 for the correct critical value - depends upon their H ₁ : $\rho > 0$ needs 0.7143, $\rho \neq 0$),0.7857
	The H_1 may be in words so B0B1 is possible. If no H_1 award for 0.7143 only.	
	5 th M1 for a correct statement relating their r_s and their cv (may be implied by correct co	omment)
	3^{rd} A1ft follow through their r_s and their cv. Comment in context. Must mention judges.	
	Don't insist on "positive" and condone it if they are using $\rho \neq 0$.	
	· · · · · · · · · · · · · · · · · · ·	

$X = M_{1} + M_{2} + M_{3} + M_{4} \sim N(336, 22^{2})$ $(X < 350) = P(Z < \frac{350 - 336}{22})$ $= P(Z < 0.64)$ $=$ 5) $M \sim N(84, 121) \text{ and } W \sim N(62, 100) \text{Let } Y = M - 1.5W$	$\mu = 336$ $\sigma^2 = 22^2 \text{ or } 484$ awrt 0.64 awrt 0.738 or 0.739	B1 B1 M1 A1 A1
= P(Z < 0.64) $=$ 5) <i>M</i> ~N(84, 121) and <i>W</i> ~N(62, 100) Let <i>Y</i> = <i>M</i> - 1.5 <i>W</i>	awrt 0.64	M1 A1
= P(Z < 0.64) $=$ 5) <i>M</i> ~N(84, 121) and <i>W</i> ~N(62, 100) Let <i>Y</i> = <i>M</i> - 1.5 <i>W</i>		A1
= P(Z < 0.64) $=$ 5) <i>M</i> ~N(84, 121) and <i>W</i> ~N(62, 100) Let <i>Y</i> = <i>M</i> - 1.5 <i>W</i>		
$M \sim N(84, 121)$ and $W \sim N(62, 100)$ Let $Y = M - 1.5W$	awrt 0.738 or 0.739	A 1
	M1	
$E(Y) = 84 - 1.5 \times 62 = -9$		A1
$\operatorname{Var}(Y) = \operatorname{Var}(M) + 1.5^2 \operatorname{Var}(W)$		M1
$= 11^2 + 1.5^2 \times 10^2 = 346$		A1
(Y < 0), = P(Z < 0.48) =	awrt 0.684 ~ 0.686	M1, A1
5)		11 marks
nd B1 for $_{} = 22 \text{ or } \sigma^2 = 22^2 \text{ or } 484$ for standardising with their mean and standard deviati st M1 for attempting to find <i>Y</i> . Need to see $\pm (M - 1.5W) =$ st A1 for a correct value for their E(<i>Y</i>) i.e. usually ± 9 . Do not nd M1 for attempting Var(<i>Y</i>) e.g $\pm 1.5^2 \times 10^2$ or $11^2 \pm 10^2$ rd M1 for attempt to calculate the correct probability. Must we Must attempt to standardise with a relevant mean and Using $\sigma^2_{M} = 11$ or $\sigma^2_{W} = 10$ is not a misread.	or equiv. May be implied b ot give M1A1 for a "lucky" $5^2 \times$ be attempting a probability	y Var(Y). <u>+</u> 9.
	Using $\sigma_M^2 = 11$ or $\sigma_W^2 = 10$ is not a misread.	Using $\sigma_M^2 = 11$ or $\sigma_W^2 = 10$ is not a misread.

Question number	Scheme	Marks	
5. (a)	Only cleaners - no managers i.e. not all <u>types</u> . OR Not a random sample 1 st 50 may be in same shift/group/share <u>same views</u> . OR Not a random sample (Allow "not a representative sample" in place of "not a random sample")	B1g B1h (2)	
(b)(i)	Label employees (1-550) or obtain an ordered list Select <u>first</u> using <u>random numbers</u> (from 1 - 11) Then select every 11 th person from the list	B1 B1 B1	
(ii)	Label managers (1-55) and cleaners (1-495) Use random numbers to select 5 managers and 45 cleaners	M1 M1 A1 (6)	
(c)	390, 372(They must be in this order)	B1, B1 (2) 10 marks	
(a)	After 1 st B1, comments should be in context , i.e. mention cleaners, managers, types of worker etc 1 st B1g for one row 2 nd B1h for both rows. "Not a random sample" only counts once. Score B1B0 or B1B1 or B0B0 on EPEN		
(b)(i)	1 st B1 for idea of labelling or getting an ordered list. No need to see 1-550. 2 nd B1 selecting first member of sample using random numbers (1-11 need not be mention 3 rd B1 selecting every <i>n</i> th where $n = 11$.	oned)	
(ii)	 1st M1 for idea of two groups and labelling both groups. (Actual numbers used not requi 2nd M1 for use of random numbers within each strata. Don't give for SRS from all 550. "Assign random numbers to managers and cleaners" scores M0M1 A1 for 5 managers and 45 cleaners. (This mark is dependent upon scoring at least on 	, , ,	
		,	

Question	Scheme	Marks
6. (a)	$p = \frac{0 \times 11 + 1 \times 21 + \dots}{10 \times (11 + 21 + \dots) \text{ or } 10 \times 100}, = \frac{223}{1000} = 0.223 (*) \qquad (\text{Accept } \frac{223}{1000})$	M1, A1cso(2)
(b)	$r = (0.8)^{10} \times 100 = 10.7374$ awrt 10.74	M1A1
	$s = {\binom{10}{2}} (0.8)^8 \times (0.2)^2 \times 100 = 30.198$ awrt 30.2	A1
	t = 100 - [r + s + 26.84 + 20.13 + 8.81] = awrt 3.28 (4)	Alcao
(c)	H_0 : Binomial ([<i>n</i> =10], <i>p</i> = 0.2) is a suitable model for these data	B1
	H ₁ : Binomial ([$n = 10$], $p = 0.2$) is NOT a suitable model for these data (2)	B1
(d)	Since $t < 5$, the last two groups are combined	M1
	and $v = 4 = 5 - 1$	A1
	(2)	
(e)	Critical value $\chi_4^2(5\%) = 9.488$	B1
	Not significant or do not reject null hypothesis	M1
	The binomial distribution with $p = 0.2$ is a suitable model for the number of	
	cuttings that do not grow	A1
	(3)	13 marks
	M1 Must show clearly how to get either 223 or 1000. As printed or better.	
	A1cso for showing how to get <u>both</u> 223 and 1000 and reaching $p = 0.223$	
(b)	M1 for any correct method (a correct expression) seen for <i>r</i> or <i>s</i> .	
	1^{st} A1 for correct value for <i>r</i> awrt 10.74	
	2^{nd} A1 for $s = awrt 30.2$	
	3^{rd} A1 for $t = 3.28$ only	
(c)	B1 for each. The value of p must be mentioned at least once. Accept B(10,	0.2)
	If hypotheses are correct but with no value of p then score B0B1	
	Minimum is $X \sim B(10, 0.2)$. If just $B(10, 0.2)$ and not $B(10, 0.2)$ award B1B0	1 11 \
(d)	M1 for combining groups (must be stated or implied by a new table with combineA1 for the calculation 4 = 5 - 1	zu cen seen)
(e)	M1 for a correct statement based on 4.17 and their cv(context not required) (may	he implied)
	Use of 4.17 as a critical value scores B0M0A0	ee mpneu)
	A1 for a correct interpretation in context and $p = 0.2$ and cuttings mentioned.	

Question number	Scheme	Marks
7. (a)	$H_0: \mu_F = \mu_M$ $H_1: \mu_F \neq \mu_M$ (Allow μ_1 and μ_2)	B1
	$z = \frac{6.86 - 5.48}{\sqrt{\frac{4.51^2}{200} + \frac{3.62^2}{100}}}$	M1 A1
	= 2.860 awrt (±) 2.86	A1
	2 tail 5% critical value (\pm) 1.96 (or probability awrt 0.0021~0.0022) B1	
	Significant result or reject the null hypothesis (o.e.) M1	
	There is evidence of a difference in the (mean) amount spent on junk food by	
	male and female teenagers	A1ft
	(7)	
(b)	CLT enables us to assume \overline{F} and \overline{M} are normally distributed B1	(1)
		8 marks
	1 st M1 for an attempt at $\frac{a-b}{\sqrt{\frac{c}{100 \text{ or } 200} + \frac{d}{100 \text{ or } 200}}}$ with 3 of <i>a</i> , <i>b</i> , <i>c</i> or <i>d</i> correct 1 st A1 for a fully correct expression 2 nd B1 for ± 1.96 <u>but</u> only if their H ₁ is two-tail (it may be in words so B0B1 is OK) If H ₁ is one-tail this is automatically B0 too. 2 nd M1 for a correct statement based on comparison of their <i>z</i> with their cv. May be implicit 2 rd A1 for a correct statement based on comparison of their <i>z</i> with their cv. May be implicit.	lied
	3 rd A1 for a correct conclusion in context based on their <i>z</i> and 1.96. Must mention junk food or money and male vs female.	
(b)	B1 for \overline{F} or \overline{M} mentioned. Allow "mean (amount spent on junk food) is <u>normally</u> Read the whole statement e.g. " original distribution is normal so mean is" sco	

June 2008 6686 Statistics S4 Mark Scheme

Question Number		Schen	ne	Marks
1 a	$E(\theta_1) = \frac{E(X_3) + 2}{3}$ $= \frac{3\mu}{3}$	$\frac{\mathrm{E}(X_4) + \mathrm{E}(X_5)}{3}$		
	$= \mu^{3}$		allow unbiased	B1
	$E(\theta_2) = \frac{E(X_{10}) - 3}{3}$ = 1/3(= 0	$E(X_1)$		
	= 0	Bias = $-\mu$	allow $\pm \mu$	B1,B1
	$E(\theta_3) = \frac{3E(X_1) + 2\mu}{6}$ $= \frac{3\mu + 2\mu}{6}$	$\frac{-2\mathrm{E}(X_2) + \mathrm{E}(X_{10})}{6}$ $\frac{+\mu}{2}$		
	$=\mu$		allow unbiased	B1 (4)
b	$\operatorname{Var}(\theta_1) = \frac{1}{9} \left\{ (\operatorname{Var}) \right\}$	$\mathbf{r} X_2) + \mathbf{Var}(X_3) + \mathbf{Var}(X_3)$	Z4)}	M1
	$= \frac{1}{9} \{ \sigma^2 +$	$+\sigma^2 + \sigma^2$		
	$= \frac{1}{3} \sigma^2$			A1
	$\operatorname{Var}(\theta_2) = \frac{2}{9} \sigma^2$			B1
	$\operatorname{Var}(\theta_3) = \frac{1}{36} \{9\sigma\}$	$r^2 + 4\sigma^2 + \sigma^2$		M1
	$= \frac{7}{18} \sigma^2$			A1
ci) ii)	θ_1 is the better est	imator. It has a lower v mator. It is biased	ar. and no bias	(5) B1 depB1 B1 depB1 (4)

Question Number	Scheme	Marks
2 a	$H_1: \sigma_A^2 = \sigma_B^2 H_0: \sigma_A^2 \neq \sigma_B^2$	B1
	$S_A^2 = 22.5$ $s_B^2 = 21.6$ awrt	M1 A1A1
	$\frac{s_1^2}{s_2^2} = 1.04$	M1 A1
	$F_{(8, 6)} = 4.15$ 1.04 < 4.15 do not reject H _{0.} The variances are the same.	B1 B1
b	Assume the samples are selected at random, (independent)	(8) B1
c	$s_{p}^{2} = \frac{8(22.5) + 6(21.62)}{14} = 22.12$ awrt 22.1	(1) M1 A1
	$H_0: \mu_A = \mu_B \qquad H_1: \mu_A \neq \mu_B$	B1
	$t = \frac{40.667 - 39.57}{\sqrt{22.12}\sqrt{\frac{1}{9} + \frac{1}{7}}}$	M1
	$\sqrt{9}$ 7 = 0.462 0.42 - 0.47	A1
	Critical value = $t_{14}(2.5\%) = 2.145$	B1
	0.462 < 2.145 No evidence to reject H ₀ . The means are the same	B1 (7)
d	Music has no effect on performance	B1 (1)

Question	Scheme	Marks
Number 3	Differences 2.1 -0.7 2.6 -1.7 3.3 1.6 1.7 1.2 1.6 2.4 $\overline{d} = 1.41$	M1 M1
	$H_0: \mu_d = 0 H_1: \mu_d > 0$	B1
	$s = \sqrt{\frac{40.65 - 10 \times 1.41^2}{9}} = 1.5191\dots$	M1
	$t = \frac{1.41}{\left(\frac{1.519}{\sqrt{10}}\right)} = 2.935$ awrt 2.94 /2.93	M1 A1
	$t_9(1\%) = 2.821$	B1
	2.935 > 2.821 Evidence to reject H_0 . There has been an increase in the mean weight of the mice.	B1ft
		(8)

2 sample test can score M0 M0 B1 for H₀ : $\mu_A = \mu_B$ H₁ : $\mu_A < \mu_B$

M1 $\frac{9 \times 24.5 + 9 \times 17.16}{18}$ M0 A0 B1 2.552 B1 ft

ie 4/8

Question Number	Scheme	Marks
4a	$\overline{x} = 668.125 \ s = 84.428$	M1 M1
	$T_7(5\%) = 1.895$	B1
	Confidence limits = 668.125 $\pm \frac{1.895 \times 84.428}{\sqrt{8}}$	M1
	= 611.6 and 724.7 Confidence interval = (612, 725)	A1A1
b	Normal distribution	(6) B1 (1)
c	£650 is within the confidence interval. No need to worry.	$\begin{array}{c} B1 \sqrt{B1} \\ (2) \end{array}$

Question Number	Scheme	Marks
5 a	Confidence interval = $\left(\frac{15 \times 0.003}{27.488}, \frac{15 \times 0.003}{6.262}\right)$ = (0.00164, 0.00719)	M1 B1B1 A1 A1
b	$0.07^2 = 0.0049$ 0.0049 is within the 95% confidence interval. There is no evidence to reject the idea that the standard deviation of the volumes is not 0.07 or The machine is working well.	(5) M1 A1 A1 (3)

Question Number	Scheme	
6 a	$H_0 p = 0.35$ $H_1 : p \neq 0.35$	B1 B1
b	Let X = Number cured then $X \sim B(20, 0.35)$	(2) B1
	$\alpha = P(Type \ I \ error) = P(x \le 3) + P(x \ge 11) \text{ given } p = 0.35$ = 0.0444 + 0.0532	M1
	= 0.0444 + 0.0532 = 0.0976	A1 (3)
c	$\beta = P(Type II error) = P(4 \le x \le 10)$	M1
	p 0.2 0.3 0.4 0.5	
	β 0.5880 0.8758 0.8565 0.5868	A1A1
d	Power = $1 - B$	(3) M1
u	0.4120 0.1435	Al
		(2)
e	Not a good procedure.	B1
	Better further away from 0.35 or This is not a very powerful test (power = $1 - \beta$)	B1dep (2)

Question Number	Scheme	Marks
7 a	$H_0: \mu = 230$ $H_1: \mu < 230$	B1
	<i>v</i> =9	
	From table critical value = ± 1.833	B1√
	$\overline{x} = 228.3 S = 17.858$	B1 B1
	$t = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$	M1
	$= \pm \frac{228.3 - 230}{\frac{17.858}{\sqrt{10}}} = \pm 0.301$	A1
	$\pm 0.301 > \pm 1.833$. No evidence to reject H ₀ . Mean is 230 N/mm ²	B1
b	Since the tensile strength is the same and the price is cheaper recommend use new supplier.	(7) B1
	supplier.	(1)

June 2008 6689 Decision Mathematics D1 Mark Scheme

Ques Num				Scheme	Marl	ks
Q1	(a)	$\frac{502}{100} = 5$	5.02 so 6 tapes.		M1 A1	(2)
	(b)	Bin 1: Bin 2: Bin 3:		Bin 5: 47, 38 Bin 6: 61 Bin 7: 41	M1 A1	
		Bin 4:	74		A1	(3)
	(c)	Bin 1: Bin 2: Bin 3:	74	Bin 4: 61, 38 Bin 5: 52, 47 Bin 6: 41, 29	M1	
					A1 A1 (3)	
		Notes: (a)		0) ÷100 (maybe implicit)	Total	•
		4 1	1A1: cao 6 tap		Total	0
		(b)	1M1: Bin 1 con	rect and at least 8 values put in bins one error, (e.g. extra, omission, 'balanced'swap).		
		(c)	1M1: Bin 1 con	rect and at least 8 values put in bins one error, (e.g. extra, omission, 'balanced'swap).		

Question Number	Scheme	Marks
Q2 (a)	G-5 = W-3 change status $G = 5 - W = 3$	M1 A1 (2)
(b)	A - no matchE = 2G = 5R = 4W = 3	A1 (1)
(c)	e.g. R is the only person who can do 1 and the only person who can do 4	B 2, 1, 0 (2)
(d)	A-2 = E-3 = W-4 = R-1 change status $A = 2 - E = 3 - W = 4 - R = 1$	M1 A1
	A = 2 E = 3 G = 5 R = 1 W = 4	A1 (3) Total 8
	 Notes: (a) 1M1: Path from G to 3 1A1: CAO including change status (stated or shown), chosen path clear. (b) 2A1: CAO must ft from stated path (c) 1B1: Correct answer, may be imprecise or muddled (bod gets B1) but all nodes refered to must be correct. 2B1: Good, clear, correct answer. (d) 1M1: Path from A to 1 1A1: CAO including change status (stated or shown) but don't penalise twice. Chosen path clear. 1A1: CAO must ft from stated path 	
	Misread (remove last two A or B marks if earned.) A-2 = E-3 c.s. $A=2-E=3$ Matching $A = 2, E = 3, R = 4 W = 5ThenG-5 = W-4 = R-1$ c.s. $G = 5 - W = 4 - R = 1Matching A = 2, E = 3, G = 5, R = 1, W = 4$	

Question Number	Scheme	Marks
Q4 (a)	 e.g. Prims starts with any vertex, Kruskal starts with the shortest arc. It is not necessary to check for cycles when using Prim. Prims adds nodes to the growing tree, Kruskal adds arcs. The tree 'grows' in a connected fashion when using Prim. Prim can be used when data in a matrix form. Other correct statements also get credit. 	B 2, 1, 0 (2)
(b)(i)	e.g. AC, CF, FD, DE, DG, AB.	M1, A1, A1 (3)
(ii)	CF, DE, DF, not CD, not EF, DG, not FG, not EG, AC, not AD, AB. [18, 19, 20, not 21, not 21, 22, not 23, not 24, 25, not 26, 27]	M1, A1, A1 (3)
		Total 8
	 Notes: (a) 1B1: Generous one correct difference. If bod give B1 2B1: Generous two distinct, correct differences. (b) 1M1: Prim's algorithm – first three arcs chosen correctly, in order. 1A1: First five arcs chosen correctly; all 7 nodes chosen correctly, in order. 2A1: All correct and arcs chosen in correct order. 2M1: Kruskal's algorithm – first 4 arcs selected chosen correctly. 1A1: All six non-rejected arcs chosen correctly. 2A1: All rejections correct and in correct order and at correct time. 	

Question Number	Scheme	Marks
Q5 (a)	x = 9, y = 11	B1,B1 (2)
(b)	AC DC DT ET	B2,1,0 (2)
(c)	36	B1 (1)
(d)	$C_1 = 49, C_2 = 48, C_3 = 39$	B1,B1,B1 (3)
(e)	e.g. SAECT	B1 (1)
(f)	maximum flow = minimum cut cut through DT, DC, AC and AE	M1 A1 (2)
		Total 11
	 Notes: (a) 1B1: cao (permit B1 if 2 correct answers, but transposed) 2B1: cao (b) 1B1: correct (condone one error – omission or extra) 2B1: all correct (no omissions or extras) (c) 1B1: cao (d) 1B1: cao 2B1: cao 3B1: cao (e) 1B1: A correct route (flow value of 1 given) (f) 1M1: Must have attempted (e) and made an attempt at a cut. 1A1: cut correct – may be drawn. Refer to max flow-min cut theorem three words out of four. 	

Question Number			S	Scheme						Marks
Q6 (a)	b.v r s t P b.v	x 4 1 -5 x	$\begin{array}{c} y \\ \frac{7}{3} \\ 3 \\ 2 \\ -\frac{7}{2} \\ \end{array}$		R 1 0 0 0 0 R	s 0 1 0 0 0	t 0 0 1 0	64 16 60 0	A 5) Row ops	
	r s x	0 0 1	$ \frac{\frac{1}{3}}{\frac{5}{2}} \frac{1}{2} -1 $	$ \frac{\frac{1}{2}}{-\frac{1}{2}} $ $ \frac{1}{2} $	1 0 0	0 1 0	-1 $-\frac{1}{4}$ $\frac{1}{4}$	4 1 15	$R_1 - 4R_3$ $R_2 - R_3$ $R_3 \div 4$	M1 A1 M1 A1ft A1
	P b.v	0 x	-1 y	$-\frac{3}{2}$	0 R	0 s	$\frac{4}{5}$	75 value	R ₄ +5R ₃	
	Z S	0	$ \frac{\frac{2}{3}}{\frac{17}{6}} $	1 0	2	0	-2	8 5	$\frac{R_1 \div \frac{1}{2}}{R_2 + \frac{1}{2}R_1}$	M1 A1ft M1 A1
	X P	1 0	$\frac{1}{6}$	0	-1 3	0	$\frac{-\frac{5}{4}}{\frac{5}{4}}$	11 87	$\frac{2}{R_{3} - \frac{1}{2}R_{1}}$ $\frac{R_{4} + \frac{3}{2}R_{1}}{R_{4} + \frac{3}{2}R_{1}}$	(9)
(b)	There is	still a n	egative r	number	in the p	profit ro	4	1		B1 (1) Total 10

Question Number	Scheme	Marks
Q7 (a)	v = 16 $w = 25$ $x = 23$ $y = 20$ $z = 8$	B3,2,1,0 (3)
(b)	BCGLMQ	B1 (1)
(c)	Float on $H = 23ft - 19 - 3 = 1$ Float on $J = 25 - 22 - 2 = 1$	B1 B1 (2)
(d)		
(e)	0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 A B C C G C A A Q A Q A Q A Q A Q A Q A A Q A A Q A A Q A A A Q A	M1 A1 A1 (4) B2,1,0 (2)
(f)	 e.g At time 23 ½ activities L, I, J and N must be taking place At time 13 ½ or 14 ½ activities C, D, E and F must be taking place So 4 workers needed. 	B2,1,0 (2) Total 14

Question Number	Scheme	Marks
Q8	Maximise (P=) $0.2 a + 0.15 b$ or $20 a + 15 b$ o.e.	B1 B1 (2)
	Subject to $a+b \le 800$ $a \ge 2b$ $50 \le b \le 100$ $a \ge 0$	B1 B2,1,0 B1 B1 (5) Total 7
	 Notes: 1B1: 'Maximise' 2B1: ratio of coefficients correct 3B1: cao 4B1: ratio of coefficients of <i>a</i> and <i>b</i> correct. 5B1: inequality correct way round i.e. □ <i>a</i> ≥ □ <i>b</i> 6B1: cao accept < – accept two separate inequalities here 7B1: cao Penalise < and > only once with last B mark earned Be generous on letters a, b, A, B, x, y etc and mixed, but remove last B mark earned if inconsistent or 3 letters in the ones marked. 	

June 2008 6690 Decision Mathematics D2 Mark Scheme

Question Number	Scheme	Marks
Q1 (a)	A walk is a finite sequence of arcs such that the end vertex of one arc is the start vertex of the next.	B2,1,0
(b)	A tour is a walk that visits every vertex, returning to its stating vertex.	B2,1,0 (4)
		Total 4
	 Notes: (a) 1B1: Probably one of the two below but accept correct relevant statement- bod gets B1, generous. 2B1: A good clear complete answer: End vertex=start vertex + finite. (b) 1B1: Probably one of the two below but accept correct relevant statement- bod gets B1, generous. 2B1: A good clear complete answer: Every vertex + return to start. 	
	Example 1Example 2D1A path is a finite sequence of edges, such that the end vertex of one edge in the sequence is the start vertex of the next, and in which no vertex appears more than once.	
	A cycle (circuit) is a closed path, ie the end vertex of the last edge is the start vertex of the first edge.	
	<u>D2</u>	
	A walk in a network is a finite sequence of edges such that the end vertex of one edge is the start vertex of the next.	
	A walk which visits every vertex, returning to its starting vertex, is called a tour .	

Question Number	Scheme	Marks
Q2 (a)	Total supply > total demand	B2,1,0 (2)
(b)	Adds 0, 0 and 5 to the dummy column	B2,1,0 (2)
(c)	L E D A 35 20 B B 40 5	B1 (1)
(d)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1
	$I_{AD} = 0 - 0 - 20 = -20$ $I_{BL} = 60 + 20 - 80 = 0$	A1 (3)
	$ \begin{array}{c ccc} L & E & D \\ \hline A & 35 & 20 - \theta & \theta \\ \hline B & 40 + \theta & 5 - \theta \end{array} $	M1
	θ = 5; entering square is AD; exiting square is BD	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1ft (2) B1ft
	$\begin{split} I_{BL} &= 60 + 20 - 80 = 0 \\ I_{BD} &= 0 + 20 - 0 = 20 \end{split}$	B1ft (2)
(e)	Cost is (£) 6100	B1 (1)
		Total 13

Juestion Jumber			S	Scheme			Marks
23 (a)	p Minimax : v	ossible.				ed is a great as ed is a small as	B2,1,0 (2)
(b)						×7. ×	
		Stage	State	Action	Dest.	Value 132*	
		1	G H	GR HR	R R	175*	M1A1 (2)
		1	П I	IR	R	139*	
			D	DG	G	$\min(175,132) = 132$	
				DH	H	$\min(175,152) = 152$ $\min(160,175) = 160*$	M1A1
		2	Е	EG	G	$\min(162,132) = 132$	
				EH	H	$\min(102,102) = 102$ $\min(144,175) = 144*$	A1 (3)
				EI	Ι	$\min(102,139) = 102$	
			F	FH	Н	min (145,175) = 145*	
				FI	Ι	$\min(210,139) = 139$	
			А	AD	D	min (185,160) = 160*	
				AE	Е	$\min(279,144) = 144$	M1A1ft
		3	В	BD	D	$\min(119,160) = 119$	A 1 G
				BE	E	$\min(250,144) = 144*$	A1ft
			0	BF	F	$\min(123,145) = 123$	
			С	CE CF	E F	$\min(240,144) = 144$ $\min(170,145) = 145*$	
			L	LA	ГА	$\min(170,145) = 145*$ $\min(155,160) = 155*$	Alft
		4	L	LA	B	$\min(133,100) = 133^{\circ}$ $\min(190,144) = 144$	
				LD	C	$\min(190,144) = 144$ $\min(148,145) = 145$	
			<u> </u>				
	Ma	ximin rout	e: LADH	R			A1ft (5)
							Total 12

Question Number	Scheme	Marks
(a) (b)	For each row the element in column x must be less than the element in column y. Row minimum $\{2,4,3\}$ row maximin = 4 Column maximum $\{6,5,6\}$ column minimax = 5 $4 \neq 5$ so not stable	B2,1,0 (2) M1 A1
(c)	M1 M2 M3 L2 4 5 6 L3 6 4 3	A1 (3) B1
	Let Liz play 2 with probability p and 3 with probability (1- p) If Mark plays 1: Liz's gain is $4p + 6(1-p) = 6 - 2p$ If Mark plays 2: Liz's gain is $5p + 4(1-p) = 4 + p$ If Mark plays 3: Liz's gain is $6p + 3(1-p) = 3 + 3p$	M1 A1 (3) B2, 1ft, 0 (2)
	$4 + p = 6 - 2p$ $p = \frac{2}{3}$ $2 \qquad 1$	M1 A1 A1ft A1 (4)
(d)	Liz should play row 1 – never, row 2 - $\frac{2}{3}$ of the time, row 3 - $\frac{1}{3}$ of the time and the value of the game is $4\frac{2}{3}$ to her. Row 3 no longer dominates row 1 and so row 1 can not be deleted. Use Simplex (linear programming).	B1 B1 (2) Total 16

Question	Scheme	
Q5 (a)		
	$\begin{bmatrix} 5 & 4 & 11 & 11 \\ 0 & 4 & 2 & 3 \\ 2 & 0 & 5 & 5 \\ 6 & 3 & 7 & 10 \end{bmatrix}$	M1 A1 (2)
	Reduce rows $ \begin{bmatrix} 1 & 0 & 7 & 7 \\ 0 & 4 & 2 & 3 \\ 2 & 0 & 5 & 5 \\ 3 & 0 & 4 & 7 \end{bmatrix} $ then columns $ \begin{bmatrix} 1 & 0 & 5 & 4 \\ 0 & 4 & 0 & 0 \\ 2 & 0 & 3 & 2 \\ 3 & 0 & 2 & 4 \end{bmatrix} $	M1 A1ft (2)
	$\begin{bmatrix} 3 & 0 & 4 & 7 \end{bmatrix}$ $\begin{bmatrix} 3 & 0 & 2 & 4 \end{bmatrix}$ Minimum element 1	M1
		A1ft
	$\begin{bmatrix} 0 & 0 & 4 & 3 \\ 0 & 5 & 0 & 0 \\ 1 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	A1ft (3)
		M1
		A1ft
		A1ft (3)
(b)	$\begin{bmatrix} 0 & 1 & 4 & 3 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 3 & 2 \\ 1 & 6 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 2 & 0 & 0 & 2 \end{bmatrix}$	M1 A1ft (2) M1A1(2) Total 14
	JoeAAMin-SeongCDOliviaDBRobertBC	
	Value £197 000	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u> Order Code UA020308 Summer 2008

For more information on Edexcel qualifications, please visit <u>www.edexcel.org.uk/qualifications</u>

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH