Mark Scheme June 2008

GCE

GCE Mathematics (8371/8373,9371/9373)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 08445760025 , our GCSE team on 08445760027 , or visit our website at www.edexcel.org.uk.

June 2008
Publications Code UA020308
All the material in this publication is copyright
© Edexcel Ltd 2008

Contents

Mark Schemes Page
6663 Core Mathematics 1 5
6664 Core Mathematics 2 17
6665 Core Mathematics 3 27
6666 Core Mathematics 4 35
6674 Further Pure Mathematics FP1 47
6675 Further Pure Mathematics FP2 55
6676 Further Pure Mathematics FP3 63
6677 Mechanics 1 71
6678 Mechanics 2 77
6679 Mechanics 3 83
6680 Mechanics 4 89
6681 Mechanics 5 93
6683 Statistics 1 97
6684 Statistics 2 105
6691 Statistics 3 119
6686 Statistics 4 127
6689 Decision Mathematics 1 133
6690 Decision Mathematics 2 141

June 2008
 6663 Core Mathematics C1
 Mark Scheme

Question number	Scheme ${ }^{\text {a }}$ Marks
1.	$\begin{equation*} 2 x+\frac{5}{3} x^{3}+c \tag{3} \end{equation*}$ M1A1A1
	M1 for an attempt to integrate $x^{n} \rightarrow x^{n+1}$. Can be given if $+c$ is only correct term. $1^{\text {st }}$ A1 for $\frac{5}{3} x^{3}$ or $2 x+c$. Accept $1 \frac{2}{3}$ for $\frac{5}{3}$. Do not accept $\frac{2 x}{1}$ or $2 x^{1}$ as final answer $2^{\text {nd }} \mathrm{A} 1$ for as printed (no extra or omitted terms). Accept $1 \frac{2}{3}$ or 1.6 for $\frac{5}{3}$ but not 1.6 or 1.67 etc Give marks for the first time correct answers are seen e.g. $\frac{5}{3}$ that later becomes 1.67 , the 1.67 is treated as ISW NB M1A0A1 is not possible

Question number	Scheme	Marks
2.	$\begin{aligned} & x\left(x^{2}-9\right) \text { or }(x \pm 0)\left(x^{2}-9\right) \text { or }(x-3)\left(x^{2}+3 x\right) \text { or }(x+3)\left(x^{2}-3 x\right) \\ & x(x-3)(x+3) \end{aligned}$	B1 M1A1 (3)
	B1 for first factor taken out correctly as indicated in line 1 above. So $x\left(x^{2}+9\right)$ is B0 M1 for attempting to factorise a relevant quadratic. "Ends" correct so e.g. $\left(x^{2}-9\right)=(x \pm p)(x \pm q)$ where $p q=9$ is OK. This mark can be scored for $\left(x^{2}-9\right)=(x+3)(x-3)$ seen anywhere. A1 for a fully correct expression with all 3 factors. Watch out for $-x(3-x)(x+3)$ which scores A1 Treat any working to solve the equation $x^{3}-9 x$ as ISW.	

Question number	Scheme ${ }^{\text {a }}$ (Marks
3	
(a) (b)	Allow "stopping at" $(0,10)$ or $(0,7)$ instead of "cutting" $1^{\text {st }} \mathrm{B} 1$ for moving the given curve up. Must be U shaped curve, minimum in first quadrant, not touching x-axis but cutting positive y-axis. Ignore any values on axes. $2^{\text {nd }} \mathrm{B} 1$ for curve cutting y-axis at $(0,10)$. Point 10 (or even $(10,0)$ marked on positive y-axis is OK) $3^{\text {rd }} \mathrm{B} 1$ for minimum indicated at $(7,3)$. Must have both coordinates and in the right order. If the curve flattens out to a turning point like this penalise once at first offence ie $1^{\text {st }} \mathrm{B} 1$ in (a) or in (b) but not in both. this would score B0B1B0 The U shape mark can be awarded if the sides are fairly straight as long as the vertex is rounded. $1^{\text {st }} \mathrm{B} 1$ for U shaped curve, touching positive x-axis and crossing y-axis at $(0,7)$ [condone $(7,0)$ if marked on positive y axis] or 7 marked on y-axis $2^{\text {nd }}$ B1 for minimum at $(3.5,0)$ or 3.5 or $\frac{7}{2}$ marked on x-axis. Do not condone $(0,3.5)$ here. Redrawing $\mathrm{f}(x)$ will score B1B0 in part (b). Points on sketch override points given in text/table. If coordinates are given elsewhere (text or table) marks can be awarded if they are compatible with the sketch.

Question number	Scheme ${ }^{\text {a }}$ Marks
5. (a) (b) (c)	
(a) (b) (c)	B1 for $a \times 1-3$ or better. Give for $a-3$ in part (a) or if it appears in (b) they must state $x_{2}=a-3$ This must be seen in (a) or before the $a(a-3)-3$ step. M1 for clear show that. Usually for $a(a-3)-3$ but can follow through their x_{2} and even allow $a x_{2}-3$ A1 for correct processing leading to printed answer. Both lines needed and no incorrect working seen. $1^{\text {st }} \mathrm{M} 1$ for attempt to form a correct equation and start to collect terms. It must be a quadratic but need not lead to a $3 \mathrm{TQ}=0$ $2^{\text {nd }}$ dM1 This mark is dependent upon the first M1. for attempt to factorize their $3 \mathrm{TQ}=0$ or to solve their $3 \mathrm{TQ}=0$. The " $=0$ "can be implied. $(x \pm p)(x \pm q)=0$, where $p q=10$ or $\left(x \pm \frac{3}{2}\right)^{2} \pm \frac{9}{4}-10=0$ or correct use of quadratic formula with \pm They must have a form that leads directly to 2 values for a. Trial and Improvement that leads to only one answer gets M0 here. A1 for both correct answers. Allow $x=\ldots$ Give $3 / 3$ for correct answers with no working or trial and improvement that gives both values for a

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme ${ }^{\text {a }}$ Marks

\hline 6. (a)

(b) \&

\hline (a)

(b) \& | B1 for curve of correct shape i.e 2 branches of curve, in correct quadrants, of roughly the correct shape and no touching or intersections with axes. |
| :--- |
| Condone up to 2 inward bends but there must be some ends that are roughly asymptotic. |
| M1 for a straight line cutting the positive y-axis and the negative x-axis. Ignore any values. |
| A1 for $(0,5)$ and $(-2.5,0)$ or points correctly marked on axes. Do not give for values in tables. |
| Condone mixing up (x, y) as (y, x) if one value is zero and other value correct. |
| $1^{\text {st }}$ M1 for attempt to form a suitable equation and multiply by x (at least one of $2 x$ or +5) should be multiplied. |
| $1^{\text {st }} \mathrm{A} 1$ for correct 3 TQ - condone missing $=0$ |
| $2^{\text {nd }}$ M1 for an attempt to solve a relevant 3TQ leading to 2 values for $x=\ldots$ |
| $2^{\text {nd }}$ A1 for both $x=-3$ and 0.5 . |
| T\&I for x values may score $1^{\text {st }}$ M1A1 otherwise no marks unless both values correct. Answer only of $x=-3$ and $x=\frac{1}{2}$ scores $4 / 4$, then apply the scheme for the final M1A1ft |
| $3^{\text {rd }}$ M1 for an attempt to find at least one y value by substituting their x in either $\frac{3}{x}$ or $2 x+5$ $3^{\text {rd }}$ A1ft follow through both their x values, in either equation but the same for each, correct pairings required but can be $x=-3, y=-1$ etc |

\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Question number \& Scheme \({ }^{\text {arass }}\) \\
\hline \begin{tabular}{l}
8. (a) \\
(2) \\
(b)
\end{tabular} \& \\
\hline (a)

(b) \& | M1 for attempting $b^{2}-4 a c$ with one of b or a correct. <0 not needed for M1 |
| :--- |
| This may be inside a square root. |
| A1cso for simplifying to printed result with no incorrect working or statements seen. |
| Need an intermediate step |
| e.g. $q^{2}--8 q<0$ or $q^{2}-4 \times 2 q \times-1<0$ or $q^{2}-4(2 q)(-1)<0$ or $q^{2}-8 q(-1)<0$ or $q^{2}-8 q \times-1<0$ |
| i.e. must have \times or brackets on the $4 a c$ term |
| <0 must be seen at least one line before the final answer. |
| M1 for factorizing or completing the square or attempting to solve $q^{2} \pm 8 q=0$. A method that would lead to 2 values for q. The " $=0$ " may be implied by values appearing later. |
| $1^{\text {st }} \mathrm{A} 1$ for $q=0$ and $q=-8$ |
| $2^{\text {nd }}$ A1 for $-8<q<0$. Can follow through their cvs but must choose "inside" region. |
| $q<0, q>-8$ is A0, $q<0$ or $q>-8$ is A0, $(-8,0)$ on its own is A0 |
| BUT " $q<0$ and $q>-8$ " is A1 |
| Do not accept a number line for final mark |

\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Question number \& Scheme ${ }^{\text {arks }}$

\hline 9. (a)
(b)

(c) \& | $\left[\frac{\mathrm{d} y}{\mathrm{~d} x}=\right] 3 k x^{2}-2 x+1$ |
| :--- |
| Gradient of line is $\frac{7}{2}$ |
| When $x=-\frac{1}{2}: \quad 3 k \times\left(\frac{1}{4}\right)-2 \times\left(-\frac{1}{2}\right)+1,=\frac{7}{2}$ |
| $\frac{3 k}{4}=\frac{3}{2} \Rightarrow k=2$ $x=-\frac{1}{2} \Rightarrow y=k \times\left(-\frac{1}{8}\right)-\left(\frac{1}{4}\right)-\frac{1}{2}-5,=-6$ |

\hline (a) \& | M1 for attempting to differentiate $x^{n} \rightarrow x^{n-1}$ (or -5 going to 0 will do) |
| :--- |
| A1 all correct. A " $+c$ " scores A0 |
| B1 for $m=\frac{7}{2}$. Rearranging the line into $y=\frac{7}{2} x+c$ does not score this mark until you are sure they are using $\frac{7}{2}$ as the gradient of the line or state $m=\frac{7}{2}$ |
| $1^{\text {st }}$ M1 for substituting $x=-\frac{1}{2}$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$, some correct substitution seen |
| $2^{\text {nd }} \mathrm{M} 1$ for forming a suitable equation in k and attempting to solve leading to $k=\ldots$ |
| Equation must use their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and their gradient of line. Assuming the gradient is 0 or 7 scores M0 unless they have clearly stated that this is the gradient of the line. |
| A1 \quad for $k=2$ |
| M1 for attempting to substitute their k (however it was found or can still be a letter) and $x=-\frac{1}{2}$ into y (some correct substitution) |
| A1 for - 6 |

\hline
\end{tabular}

Question number	Scheme ${ }^{\text {a }}$ Marks
11. (a) (b)	$\begin{align*} & \left(x^{2}+3\right)^{2}=x^{4}+3 x^{2}+3 x^{2}+3^{2} \\ & \frac{\left(x^{2}+3\right)^{2}}{x^{2}}=\frac{x^{4}+6 x^{2}+9}{x^{2}}=x^{2}+6+9 x^{-2} \tag{*}\\ & y=\frac{x^{3}}{3}+6 x+\frac{9}{-1} x^{-1}(+c) \\ & 20=\frac{27}{3}+6 \times 3-\frac{9}{3}+c \\ & c=-4 \\ & {[y=] \frac{x^{3}}{3}+6 x-9 x^{-1}-4} \end{align*}$ M1 A1cso (2) M1A1A1 M1 A1 A1ft
(a) (b)	M1 for attempting to expand $\left(x^{2}+3\right)^{2}$ and having at least 3(out of the 4) correct terms. A1 at least this should be seen and no incorrect working seen. If they never write $\frac{9}{x^{2}}$ as $9 x^{-2}$ they score A0. $1^{\text {st }} \mathrm{M} 1$ for some correct integration, one correct x term as printed or better Trying $\frac{\int u}{\int v}$ loses the first M mark but could pick up the second. $1^{\text {st }}$ A1 for two correct x terms, un-simplified, as printed or better $2^{\text {nd }}$ A1 for a fully correct expression. Terms need not be simplified and $+c$ is not required. No $+c$ loses the next 3 marks $2^{\text {nd }}$ M1 for using $x=3$ and $y=20$ in their expression for $\mathrm{f}(x)\left[\neq \frac{\mathrm{d} y}{\mathrm{~d} x}\right]$ to form a linear equation for c $3^{\text {rd }} \mathrm{A} 1 \quad$ for $c=-4$ $4^{\text {th }} \mathrm{A} 1 \mathrm{ft}$ for an expression for y with simplified x terms: $\frac{9}{x}$ for $9 x^{-1}$ is OK . Condone missing " $y=$ " Follow through their numerical value of c only.

June 2008 6664 Core Mathematics C2
 Mark Scheme

Question number	Scheme	Marks
1.	(a) Attempt to find $\mathrm{f}(-4)$ or $\mathrm{f}(4) . \quad\left(\mathrm{f}(-4)=2(-4)^{3}-3(-4)^{2}-39(-4)+20\right)$ $(=-128-48+156+20)=0, \quad$ so $(x+4)$ is a factor. (b) $2 x^{3}-3 x^{2}-39 x+20=(x+4)\left(2 x^{2}-11 x+5\right)$ $(2 x-1)(x-5)$ (The 3 brackets need not be written together) or $\left(x-\frac{1}{2}\right)(2 x-10)$ or equivalent	M1 A1 M1 A1 M1 A1cso(4)
	(a) Long division scores no marks in part (a). The factor theorem is required. However, the first two marks in (b) can be earned from division seen in (a)... \ldots but if a different long division result is seen in (b), the work seen in (b) takes precedence for marks in (b). A1 requires zero and a simple conclusion (even just a tick, or Q.E.D.), or may be scored by a preamble, e.g. 'If $\mathrm{f}(-4)=0,(x+4)$ is a factor.....' (b) First M requires use of $(x+4)$ to obtain $\left(2 x^{2}+a x+b\right), a \neq 0, b \neq 0$, even with a remainder. Working need not be seen... this could be done 'by inspection'. Second M for the attempt to factorise their three-term quadratic. Usual rule: $\left(k x^{2}+a x+b\right)=(p x+c)(q x+d)$, where $\|c d\|=\|b\|$ and $\|p q\|=\|k\|$. If 'solutions' appear before or after factorisation, ignore... ... but factors must be seen to score the second M mark. Alternative (first 2 marks): $(x+4)\left(2 x^{2}+a x+b\right)=2 x^{3}+(8+a) x^{2}+(4 a+b) x+4 b=0$, then compare coefficients to find values of a and b. [M1] $\begin{equation*} a=-11, b=5 \tag{A1} \end{equation*}$ Alternative: Factor theorem: Finding that $\mathrm{f}\left(\frac{1}{2}\right)=0 \therefore$ factor is, $(2 x-1)$ [M1, A1] Finding that $\mathrm{f}(5)=0 \therefore$ factor is, $\quad(x-5) \quad[\mathrm{M} 1, \mathrm{~A} 1]$ "Combining" all 3 factors is not required. If just one of these is found, score the first 2 mal A0. Losing a factor of 2: $(x+4)\left(x-\frac{1}{2}\right)(x-5)$ scores M1 A1 M1 A0 Answer only, one e.g. $(x+4)(2 x-1)(x+5)$ scores M1 A1 M1 A0	ks M1 A1 M0 ign wrong:

Question number	Scheme	Marks
2.	(a) 1.732, 2.058, 5.196 awrt (One or two correct B1 B0, All correct B1 B1) (b) $\frac{1}{2} \times 0.5 \ldots \ldots$ $\begin{aligned} & \ldots \ldots(1.732+5.196)+2(2.058+2.646+3.630)\} \\ & \quad=5.899 \text { (awrt } 5.9, \text { allowed even after minor slips in values) } \end{aligned}$	B1 B1 (2) B1 M1 A1ft A1 (4)
	(a) Accept awrt (but less accuracy loses these marks). Also accept exact answers, e.g. $\sqrt{3}$ at $x=0, \sqrt{27}$ or $3 \sqrt{3}$ at $x=2$. (b) For the M mark, the first bracket must contain the 'first and last' values, and the second bracket must have no additional values. If the only mistake is to omit one of the values from the second bracket, this can be considered as a slip and the M mark can be allowed. Bracketing mistake: i.e. $\frac{1}{2} \times 0.5(1.732+5.196)+2(2.058+2.646+3.630)$ scores B1 M1 A0 A0 unless the final answer implies that the calculation has been done correctly (then full marks can be given). x values: M0 if the values used in the brackets are x values instead of y values. Alternative: Separate trapezia may be used, and this can be marked equivalently. $\left[\frac{1}{4}(1.732+2.058)+\frac{1}{4}(2.058+2.646)+\frac{1}{4}(2.646+3.630)+\frac{1}{4}(3.630+5.196)\right]$	

Question number	Scheme		
3.	a) $(1+a x)^{10}=1+10 a x \ldots \ldots$ (Not unsimplified versions) $+\frac{10 \times 9}{2}(a x)^{2}+\frac{10 \times 9 \times 8}{6}(a x)^{3}$ Evidence from one of these terms is sufficient $+45(a x)^{2},+120(a x)^{3}$ or $+45 a^{2} x^{2},+120 a^{3} x^{3}$ (b) $120 a^{3}=2 \times 45 a^{2} \quad a=\frac{3}{4}$ or equiv.(e.g. $\frac{90}{120}, 0.75$) Ignore $a=0$, if seen	B1 M1 A1, A1 M1 A1	(4) (2)
	(a) The terms can be 'listed' rather than added. M1: Requires correct structure: 'binomial coefficient' (perhaps from Pascal's triangle) and the correct power of x. (The M mark can also be given for an expansion in descending powers of x). Allow 'slips' such as: $\frac{10 \times 9}{2} a x^{2}, \quad \frac{10 \times 9}{3 \times 2}(a x)^{3}, \quad \frac{10 \times 9}{2} x^{2}, \quad \frac{9 \times 8 \times 7}{3 \times 2} a^{3} x^{3}$ However, $45+a^{2} x^{2}+120+a^{3} x^{3}$ or similar is M0. $\binom{10}{2}$ and $\binom{10}{3}$ or equivalent such as ${ }^{10} C_{2}$ and ${ }^{10} C_{3}$ are acceptable, and even $\left(\frac{10}{2}\right)$ and $\left(\frac{10}{3}\right)$ are acceptable for the method mark. $1^{\text {st }} \mathrm{A} 1$: Correct x^{2} term. $2^{\text {nd }} \mathrm{A} 1$: Correct x^{3} term (These must be simplified). If simplification is not seen in (a), but correct simplified terms are seen in (b), these marks can be awarded. However, if wrong simplification is seen in (a), this takes precedence. Special case: If $(a x)^{2}$ and $(a x)^{3}$ are seen within the working, but then lost... \ldots A1 A0 can be given if $45 a x^{2}$ and $120 a x^{3}$ are both achieved. (b) M: Equating their coefficent of x^{3} to twice their coefficient of $x^{2} \ldots$ \cdots or equating their coefficent of x^{2} to twice their coefficient of x^{3}. (\ldots or coefficients can be correct coefficients rather than their coefficients). Allow this mark even if the equation is trivial, e.g. $120 a=90 a$. An equation in a alone is required for this M mark, although... $\ldots \text { condone, e.g. } 120 a^{3} x^{3}=90 a^{2} x^{2} \Rightarrow\left(120 a^{3}=90 a^{2} \Rightarrow\right) a=\frac{3}{4}$ Beware: $a=\frac{3}{4}$ following $120 a=90 a$, which is A0.		

Question number	Scheme	Marks
4.	(a) $x=\frac{\log 7}{\log 5}$ or $x=\log _{5} 7 \quad$ (i.e. correct method up to $x=\ldots$) 1.21 Must be this answer (3 s.f.) (b) $\left(5^{x}-7\right)\left(5^{x}-5\right) \quad$ Or another variable, e.g. $(y-7)(y-5)$, even $(x-7)(x-5)$ $\left(5^{x}=7\right.$ or $\left.5^{x}=5\right) \quad x=1.2$ (awrt) ft from the answer to (a), if used $x=1 \quad$ (allow 1.0 or 1.00 or 1.000)	M1 A1 (2) M1 A1 Alft B1
	(a) 1.21 with no working: M1 A1 (even if it left as $5^{1.21}$). Other answers which round to 1.2 with no working: M1 A0. (b) M: Using the correct quadratic equation, attempt to factorise $\left(5^{x} \pm 7\right)\left(5^{x} \pm 5\right)$, or attempt quadratic formula. Allow $\log _{5} 7$ or $\frac{\log 7}{\log 5}$ instead of 1.2 for A1ft. No marks for simply substituting a decimal answer from (a) into the given equation (perhaps showing that it gives approximately zero). However, note the following special case: Showing that $5^{x}=7$ satisfies the given equation, therefore 1.21 is a solution scores $0,0,1,0$ (and could score full marks if the $x=1$ were also found). e.g. If $5^{x}=7$, then $5^{2 x}=49$, and $5^{2 x}-12\left(5^{x}\right)+35=49-84+35=0$, so one solution is $x=1.21$ ('conclusion' must be seen). To score this special case mark, values substituted into the equation must be exact. Also, the mark would not be scored in the following case: e.g. If $5^{x}=7,5^{2 x}-84+35=0 \Rightarrow 5^{2 x}=49 \Rightarrow x=1.21$ (Showing no appreciation that $5^{2 x}=\left(5^{x}\right)^{2}$) B1: Do not award this mark if $x=1$ clearly follows from wrong working.	

Question number	Scheme	Marks
5.	(a) $(8-3)^{2}+(3-1)^{2}$ or $\sqrt{(8-3)^{2}+(3-1)^{2}}$ $(x \pm 3)^{2}+(y \pm 1)^{2}=k \quad$ or $\quad(x \pm 1)^{2}+(y \pm 3)^{2}=k \quad(k$ a positive value $)$ $(x-3)^{2}+(y-1)^{2}=29$ (Not $(\sqrt{29})^{2}$ or 5.39^{2}) (b) Gradient of radius $=\frac{2}{5}$ (or exact equiv.) Must be seen or used in (b) Gradient of tangent $=\frac{-5}{2} \quad($ Using perpendicular gradient method $)$ $y-3=\frac{-5}{2}(x-8)$ (ft gradient of radius, dependent upon both M marks) $5 x+2 y-46=0$ (Or equiv., equated to zero, e.g. $92-4 y-10 x=0$) (Must have integer coefficients)	M1 A1 M1 A1 (4) B1 M1 M1 A1ft A1 (5) 9
	(a) For the M mark, condone one slip inside a bracket, e.g. $(8-3)^{2}+(3+1)^{2}$, $(8-1)^{2}+(1-3)^{2}$ The first two marks may be gained implicitly from the circle equation. (b) $2^{\text {nd }} \mathrm{M}$: Eqn. of line through $(8,3)$, in any form, with any grad. (except 0 or ∞). If the 8 and 3 are the 'wrong way round', this M mark is only given if a correct general formula, e.g. $y-y_{1}=m\left(x-x_{1}\right)$, is quoted. Alternative: $2^{\text {nd }} \mathrm{M}$: Using $(8,3)$ and an m value in $y=m x+c$ to find a value of c. A1ft: as in main scheme. (Correct substitution of 8 and 3 , then a wrong c value will still score the A1 ft) (b) Alternatives for the first 2 marks: (but in these 2 cases the $1^{\text {st }} \mathrm{A}$ mark is not ft) (i) Finding gradient of tangent by implicit differentiation $2(x-3)+2(y-1) \frac{\mathrm{d} y}{\mathrm{~d} x}=0 \quad \text { (or equivalent) }$ Subs. $x=8$ and $y=3$ into a 'derived' expression to find a value for $\mathrm{d} y / \mathrm{d} x$ (ii) Finding gradient of tangent by differentiation of $y=1+\sqrt{20+6 x-x^{2}}$ $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}\left(20+6 x-x^{2}\right)^{-\frac{1}{2}}(6-2 x) \quad \text { (or equivalent) }$ Subs. $x=8$ into a 'derived' expression to find a value for $\mathrm{d} y / \mathrm{d} x$ Another alternative: $\begin{array}{ll} \text { Using } x x_{1}+y y_{1}+g\left(x+x_{1}\right)+f\left(y+y_{1}\right)+c=0 \\ x^{2}+y^{2}-6 x-2 y-19=0 & \text { B1 } \\ 8 x+3 y, \quad-3(x+8)-(y+3)-19=0 & \text { M1, M1 A1ft (ft from circle eqn.) } \\ 5 x+2 y-46=0 & \text { A1 } \end{array}$	B1 M1 B1 M1

Question number	Scheme	Marks
6.	(a) $T_{20}=5 \times\left(\frac{4}{5}\right)^{19}=0.072 \quad$ (Accept awrt) \quad Allow $5 \times \frac{4}{5}^{19}$ for M1 M1 A1 (b) $S_{\infty}=\frac{5}{1-0.8}=25$ (c) $\frac{5\left(1-0.8^{k}\right)}{1-0.8}>24.95$ (Allow with $=$ or $<$) $1-0.8^{k}>0.998$ (or equiv., see below) (Allow with $=$ or $<$) $k \log 0.8<\log 0.002$ or $k>\log _{0.8} 0.002$ (Allow with $=$ or $<$) $k>\frac{\log 0.002}{\log 0.8}$ (d) $k=28 \quad$ (Must be this integer value) Not $k>27$, or $k<28$, or $k>28 \quad B 1$	(2) M1 A1 (2) M1 A1 M1 A1cso (4) (1)
	(a) and (b): Correct answer without working scores both marks. (a) M: Requires use of the correct formula $a r^{n-1}$. (b) M: Requires use of the correct formula $\frac{a}{1-r}$ (c) $1^{\text {st }} \mathrm{M}$: The sum may have already been 'manipulated' (perhaps wrongly), but this mark can still be allowed. $1^{\text {st }} \mathrm{A}$: A 'numerically correct' version that has dealt with $(1-0.8)$ denominator, e.g. $1-\left(\frac{4}{5}\right)^{k}>0.998, \quad 5\left(1-0.8^{k}\right)>4.99, \quad 25\left(1-0.8^{k}\right)>24.95$, $5-5\left(0.8^{k}\right)>4.99$. In any of these, $\frac{4}{5}$ instead of 0.8 is fine, and condone $\frac{4}{5}^{k}$ if correctly treated later. $2^{\text {nd }} \mathrm{M}$: Introducing logs and using laws of logs correctly (this must include dealing with the power k so that $p^{k}=k \log p$). $2^{\text {nd }} \mathrm{A}$: An incorrect statement (including equalities) at any stage in the working loses this mark (this is often identifiable at the stage $k \log 0.8>\log 0.002$). (So a fully correct method with inequalities is required.)	

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Scheme \& Marks \& \\
\hline 7. \& \begin{tabular}{l}
(a) \(r \theta=7 \times 0.8=5.6(\mathrm{~cm})\) \\
(b) \(\frac{1}{2} r^{2} \theta=\frac{1}{2} \times 7^{2} \times 0.8=19.6\left(\mathrm{~cm}^{2}\right)\) \\
(c)
\[
\begin{aligned}
\& B D^{2}=7^{2}+(\text { their } A D)^{2}-(2 \times 7 \times(\text { their } A D) \times \cos 0.8) \\
\& B D^{2}=7^{2}+3.5^{2}-(2 \times 7 \times 3.5 \times \cos 0.8) \quad\left(\text { or awrt } 46^{\circ} \text { for the angle }\right) \\
\& (B D=5.21) \\
\& \text { Perimeter }=(\text { their } D C)+" 5.6^{"}+" 5.21 " \quad=14.3(\mathrm{~cm}) \quad \quad(\text { Accept awrt })
\end{aligned}
\] \\
(d) \(\triangle A B D=\frac{1}{2} \times 7 \times(\) their \(A D) \times \sin 0.8 \quad\) (or awrt \(46^{\circ}\) for the angle) \((\mathrm{ft}\) their \(A D)\) (= 8.78...) \\
(If the correct formula \(\frac{1}{2} a b \sin C\) is quoted the use of any two of the sides of \(\triangle A B D\) as \(a\) and \(b\) scores the M mark). \\
Area \(=" 19.6 "\) " \(8.78 \ldots " \quad=10.8\left(\mathrm{~cm}^{2}\right)\) (Accept awrt)
\end{tabular} \& \begin{tabular}{l}
M1 A1 \\
M1 A1 \\
M1 \\
A1 \\
M1 A1 \\
M1 A1ft \\
M1 A1
\end{tabular} \& (2)
(2)
(4)

(4)

\hline \& | Units (cm or cm^{2}) are not required in any of the answers. |
| :--- |
| (a) and (b): Correct answers without working score both marks. |
| (a) M: Use of $r \theta$ (with θ in radians), or equivalent (could be working in degrees with a correct degrees formula). |
| (b) M: Use of $\frac{1}{2} r^{2} \theta$ (with θ in radians), or equivalent (could be working in degrees with a correct degrees formula). |
| (c) $1^{\text {st }} \mathrm{M}$: Use of the (correct) cosine rule formula to find $B D^{2}$ or $B D$. |
| Any other methods need to be complete methods to find $B D^{2}$ or $B D$. $2^{\text {nd }} \mathrm{M}$: Adding their $D C$ to their $\operatorname{arc} B C$ and their $B D$. |
| Beware: If 0.8 is used, but calculator is in degree mode, this can still earn M1 A1 (for the required expression), but this gives $B D=3.50 \ldots$ so the perimeter may appear as $3.5+5.6+3.5$ (earning M1 A0). |
| (d) $1^{\text {st }} \mathrm{M}$: Use of the (correct) area formula to find $\triangle A B D$. |
| Any other methods need to be complete methods to find $\triangle A B D$. $2^{\text {nd }} \mathrm{M}$: Subtracting their $\triangle A B D$ from their sector $A B C$. |
| Using segment formula $\frac{1}{2} r^{2}(\theta-\sin \theta)$ scores no marks in part (d). | \& \&

\hline
\end{tabular}

Question number	Scheme	Marks
9.		B1 M1, M1 A1 (4) B1 M1, M1 M1 A1 A1(6)
	(a) Extra solution(s) in range: Loses the A mark. Extra solutions outside range: Ignore (whether correct or not). Common solutions: 65 (only correct solution) will score B1 M0 M1 A0 (2 marks) 65 and 115 will score B1 M0 M1 A0 (2 marks) 44.99 (or similar) for α is B 0 , and $64.99,155.01$ (or similar) is A0. (b) Extra solution(s) in range: Loses the final A mark. Extra solutions outside range: Ignore (whether correct or not). Common solutions: 40 (only correct solution) will score B1 M0 M0 M1 A0 A0 (2 marks) 40 and 80 (only correct solutions) B1 M1 M0 M1 A0 A0 (3 marks) 40 and 320 (only correct solutions) B1 M0 M0 M1 A0 A0 (2 marks) Answers without working: Full marks can be given (in both parts), B and M marks by implication. Answers given in radians: Deduct a maximum of 2 marks (misread) from B and A marks. (Deduct these at first and second occurrence.) Answers that begin with statements such as $\sin (x-20)=\sin x-\sin 20$ or $\cos x=-\frac{1}{6}$, then go on to find a value of ' α ' or ' β ', however badly, can continue to earn the first M mark in either part, but will score no further marks. Possible misread: $\cos 3 x=\frac{1}{2}$, giving $20,100,140,220,260,340$ Could score up to 4 marks B0 M1 M1 M1 A0 A1 for the above answers.	

June 2008

6665 Core Mathematics C3
 Mark Scheme

Question Number	Scheme		Marks	
1.	(a)	$\begin{aligned} \mathrm{e}^{2 x+1} & =2 \\ 2 x+1 & =\ln 2 \\ x & =\frac{1}{2}(\ln 2-1) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	(2)
	(b)	$\begin{gathered} \frac{\mathrm{d} y}{\mathrm{~d} x}=8 \mathrm{e}^{2 x+1} \\ x=\frac{1}{2}(\ln 2-1) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=16 \end{gathered}$	B1 B1	
		$\begin{aligned} y-8 & =16\left(x-\frac{1}{2}(\ln 2-1)\right) \\ y & =16 x+16-8 \ln 2 \end{aligned}$	M1 A1	(4) [6]

Question Number	Scheme	Marks
2.	(a) $\begin{align*} R^{2} & =5^{2}+12^{2} \\ R & =13 \\ \tan \alpha & =\frac{12}{5} \\ \alpha & \approx 1.176 \tag{4} \end{align*}$	M1 A1 M1 A1
	$\text { (b) } \quad \begin{aligned} \cos (x-\alpha) & =\frac{6}{13} \\ x-\alpha & =\arccos \frac{6}{13}=1.091 \ldots \\ x & =1.091 \ldots+1.176 \ldots \approx 2.267 \ldots \end{aligned}$	M1 A1 A1
	$\begin{array}{rlr} x-\alpha & =-1.091 \ldots & \text { accept } \ldots=5.19 \ldots \text { for } \mathrm{M} \\ x & =-1.091 \ldots+1.176 \ldots \approx 0.0849 \ldots \text { awrt } 0.084 \text { or } 0.085 \tag{5} \end{array}$	$\mathrm{M} 1$
	$R_{\max }=13$ ft their R (ii) At the maximum, $\cos (x-\alpha)=1$ or $x-\alpha=0$ $x=\alpha=1.176 \ldots \quad \text { awrt } 1.2, \mathrm{ft} \text { their } \alpha$	B1 ft M1 A1ft (3) [12]

Question Number	Scheme	Marks
6.	$\begin{gathered} \text { (a)(i) } \frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{3 x}(\sin x+2 \cos x)\right)=3 \mathrm{e}^{3 x}(\sin x+2 \cos x)+\mathrm{e}^{3 x}(\cos x-2 \sin x) \\ \left(=\mathrm{e}^{3 x}(\sin x+7 \cos x)\right) \end{gathered}$ (ii) $\frac{\mathrm{d}}{\mathrm{d} x}\left(x^{3} \ln (5 x+2)\right)=3 x^{2} \ln (5 x+2)+\frac{5 x^{3}}{5 x+2}$ (b) $\begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{(x+1)^{2}(6 x+6)-2(x+1)\left(3 x^{2}+6 x-7\right)}{(x+1)^{4}} \\ & =\frac{(x+1)\left(6 x^{2}+12 x+6-6 x^{2}-12 x+14\right)}{(x+1)^{4}} \\ & =\frac{20}{(x+1)^{3}} * \end{aligned}$ (c) $\begin{aligned} \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{60}{(x+1)^{4}} & =-\frac{15}{4} \\ (x+1)^{4} & =16 \\ x & =1,-3 \end{aligned}$ both Note: The simplification in part (b) can be carried out as follows $\begin{aligned} & \frac{(x+1)^{2}(6 x+6)-2(x+1)\left(3 x^{2}+6 x-7\right)}{(x+1)^{4}} \\ = & \frac{\left(6 x^{3}+18 x^{2}+18 x+6\right)-\left(6 x^{3}+18 x^{2}-2 x-14\right)}{(x+1)^{4}} \\ = & \frac{20 x+20}{(x+1)^{4}}=\frac{20(x+1)}{(x+1)^{4}}=\frac{20}{(x+1)^{3}} \end{aligned}$	M1 A1 A1 (3) M1 A1 A1 (3) M1 $\frac{\mathrm{A} 1}{\mathrm{~A} 1}$ M1 A1 (5) M1 M1 A1 (3) [14] M1 A1

June 2008
 6666 Core Mathematics C4 Mark Scheme

Note an expression like Area $\approx \frac{1}{2} \times 0.4+\mathrm{e}^{0}+2\left(\mathrm{e}^{0.08}+\mathrm{e}^{0.32}+\mathrm{e}^{0.72}+\mathrm{e}^{1.28}\right)+\mathrm{e}^{2}$ would score B1M1A0

Allow one term missing (slip!) in the () brackets for M1.

The M1 mark for structure is for the material found in the curly brackets ie
$[$ first y ordinate $+2($ intermediate $\mathrm{ft} y$ ordinate $)+$ final y ordinate $]$

Question Number	Scheme		Marks
2. (a)	$\left\{\begin{array}{l}u=x \Rightarrow \frac{d u}{d x}=1 \\ \frac{d v}{d x}=\mathrm{e}^{x} \Rightarrow 2 v=\mathrm{e}^{x}\end{array}\right\}$		
	$\int x \mathrm{e}^{x} \mathrm{~d} x=x \mathrm{e}^{x}-\int \mathrm{e}^{x} \cdot 1 \mathrm{~d} x$	Use of 'integration by parts' formula in the correct direction. (See note.) Correct expression. (Ignore dx)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	$\begin{aligned} & =x \mathrm{e}^{x}-\int \mathrm{e}^{x} \mathrm{~d} x \\ & =x \mathrm{e}^{x}-\mathrm{e}^{x}(+c) \end{aligned}$	Correct integration with/without $+c$	A1 [3]
(b)	$\left\{\begin{array}{l} u=x^{2} \Rightarrow \frac{\mathrm{~d} u}{\mathrm{dx}}=2 x \\ \frac{\mathrm{dv}}{\mathrm{dx}}=\mathrm{e}^{x} \Rightarrow v=\mathrm{e}^{x} \end{array}\right\}$		
	$\begin{aligned} \int x^{2} \mathrm{e}^{x} \mathrm{~d} x & =x^{2} \mathrm{e}^{x}-\int \mathrm{e}^{x} \cdot 2 x \mathrm{~d} x \\ & =x^{2} \mathrm{e}^{x}-2 \int x \mathrm{e}^{x} \mathrm{~d} x \\ & =x^{2} \mathrm{e}^{x}-2\left(x \mathrm{e}^{x}-\mathrm{e}^{x}\right)+c \end{aligned}$	Use of 'integration by parts' formula in the correct direction. Correct expression. (Ignore dx)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
		Correct expression including $+\mathbf{c}$. (seen at any stage! in part (b)) You can ignore subsequent working.	A1 ISW [3]
	$\left\{\begin{array}{l} =x^{2} \mathrm{e}^{x}-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}+c \\ =\mathrm{e}^{x}\left(x^{2}-2 x+2\right)+c \end{array}\right\}$	Ignore subsequent working	
			6 marks

> Note integration by parts in the correct direction means that u and $\frac{\mathrm{d} v}{\mathrm{dv}}$ must be assigned/used as $u=x$ and $\frac{\mathrm{d} v}{\mathrm{~d} x}=\mathrm{e}^{x}$ in part (a) for example.
$+c$ is not required in part (a).
$+c$ is required in part (b).

Question Number	Scheme		Marks
3. (a)	From question, $\frac{\mathrm{d} A}{\mathrm{~d} t}=0.032$	$\frac{\mathrm{d} A}{\mathrm{~d} t}=0.032 \text { seen }$ or implied from working.	B1
	$\left\{A=\pi x^{2} \Rightarrow \frac{\mathrm{~d} A}{\mathrm{~d} x}=\right\} 2 \pi x$	$2 \pi x$ by itself seen or implied from working	B1
	$\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\mathrm{d} A}{\mathrm{~d} t} \div \frac{\mathrm{d} A}{\mathrm{~d} x}=(0.032) \frac{1}{2 \pi x} ;\left\{=\frac{0.016}{\pi x}\right\}$	$0.032 \div \text { Candidate's } \frac{\mathrm{d} A}{\mathrm{~d} x} ;$	M1;
	When $x=2 \mathrm{~cm}, \frac{\mathrm{~d} x}{\mathrm{~d} t}=\frac{0.016}{2 \pi}$		
	Hence, $\frac{\mathrm{d} x}{\mathrm{~d} t}=0.002546479 \ldots \quad\left(\mathrm{~cm} \mathrm{~s}^{-1}\right)$	awrt 0.00255	A1 cso
			[4]
(b)	$V=\underline{\pi x^{2}(5 x)}=\underline{5 \pi x^{3}}$	$V=\underline{\pi x^{2}(5 x)}$ or $\underline{5 \pi x^{3}}$	B1
	$\frac{\mathrm{d} V}{\mathrm{~d} x}=15 \pi x^{2}$	$\frac{\mathrm{d} V}{\mathrm{~d} x}=15 \pi x^{2}$ or ft from candidate's V in one variable	B1 $\sqrt{ }$
	$\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}=15 \pi x^{2} .\left(\frac{0.016}{\pi x}\right) ;\{=0.24 x\}$	$\text { Candidate's } \frac{\mathrm{d} V}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}$	M1 $\sqrt{ }$
	When $x=2 \mathrm{~cm}, \frac{\mathrm{~d} V}{\mathrm{~d} t}=0.24(2)=\underline{0.48}\left(\mathrm{~cm}^{3} \mathrm{~s}^{-1}\right)$	$\underline{0.48}$ or awrt 0.48	A1 cso
			[4]
			8 marks

Question Number	Scheme		Marks
4. (a)	$3 x^{2}-y^{2}+x y=4 \quad($ eqn $*)$		
		Differentiates implicitly to include either $\pm k y \frac{d y}{d x}$ or $x \frac{d y}{d x}$. (Ignore $\left(\frac{d y}{d x}=\right)$)	M1
	$\left\{\frac{x x}{x} \not x\right\} \quad 6 x-2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(\underline{\underline{y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}}}\right)=\underline{0}$	Correct application () of product rule	B1
		$\left(3 x^{2}-y^{2}\right) \rightarrow\left(\underline{6 x-2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}}\right) \text { and }(4 \rightarrow \underline{0})$	A1
	$\left\{\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-6 x-y}{x-2 y}\right\} \text { or }\left\{\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 x+y}{2 y-x}\right\}$	not necessarily required.	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{8}{3} \Rightarrow \frac{-6 x-y}{x-2 y}=\frac{8}{3}$	Substituting $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{8}{3}$ into their equation.	M1*
	giving $-18 x-3 y=8 x-16 y$		
	giving $13 y=26 x$	Attempt to combine either terms in x or terms in y together to give either $a x$ or $b y$.	dM1 *
	Hence, $y=2 x \Rightarrow \underline{y-2 x=0}$	simplifying to give $\underline{y-2 x=0}$ AG	A1 cso
	At $P \& Q, y=2 x$. Substituting into eqn *		
	gives $3 x^{2}-(2 x)^{2}+x(2 x)=4$	Attempt replacing y by $2 x$ in at least one of the y terms in eqn*	M1
	Simplifying gives, $x^{2}=4 \Rightarrow \underline{x= \pm 2}$	Either $x=2$ or $x=-2$	A1
	$y=2 x \Rightarrow y= \pm 4$		
	Hence coordinates are $\underline{(2,4)}$ and $\underline{(-2,-4)}$	Both $\underline{(2,4)}$ and $\underline{(-2,-4)}$	A1
			9 marks

Question Number	Scheme		Marks
5. (a)	** represents a constant (which must be consistent for fir$\frac{1}{\sqrt{(4-3 x)}}=(4-3 x)^{-\frac{1}{2}}=\underline{(4)^{-\frac{1}{2}}}\left(1-\frac{3 x}{4}\right)^{-\frac{1}{2}}=\frac{1}{\underline{2}}\left(1-\frac{3 x}{4}\right)^{-\frac{1}{2}}$$=\frac{1}{2}\left[1+\left(-\frac{1}{2}\right)(* * x) ;+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{21}(* * x)^{2}+\ldots\right]$	curacy mark) $(4)^{-\frac{1}{2}}$ or $\frac{1}{2}$ outside brackets	B1
		Expands $(1+* * x)^{-\frac{1}{2}}$ to give a simplified or an un-simplified $1+\left(-\frac{1}{2}\right)(* * x) ;$ A correct simplified or an unsimplified [\qquad] expansion with candidate's followed through ($* * x$)	M1; A1 $\sqrt{\text { - }}$
	$=\frac{1}{2}\left[1+\left(-\frac{1}{2}\right)\left(-\frac{3 x}{4}\right)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}\left(-\frac{3 x}{4}\right)^{2}+\ldots\right]$	Award SC M1 if you see $\left(-\frac{1}{2}\right)(* x x)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(* * x)^{2}$	
(b)	$=\frac{1}{2}\left[1+\frac{3}{8} x ;+\frac{27}{128} x^{2}+\ldots\right]$	$\frac{\frac{1}{2}\left[1+\frac{3}{8} x ; \ldots\right]}{\mathrm{SC}: K\left[1+\frac{3}{8} x+\frac{27}{128} x^{2}+\ldots\right]}$	A1 isw
		$\frac{1}{2}\left[\ldots \ldots \ldots ; \frac{27}{128} x^{2}\right]$	A1 isw
	$\left\{=\frac{1}{2}+\frac{3}{16} x ;+\frac{27}{256} x^{2}+\ldots\right\}$	Ignore subsequent working	
	$(x+8)\left(\frac{1}{2}+\frac{3}{16} x+\frac{27}{256} x^{2}+\ldots\right)$	Writing $(x+8)$ multiplied by candidate's part (a) expansion.	M1
	$\begin{aligned} = & \frac{1}{2} x+\frac{3}{16} x^{2}+\ldots \ldots . \\ & +4+\frac{3}{2} x+\frac{27}{32} x^{2}+\ldots . . \end{aligned}$	Multiply out brackets to find a constant term, two x terms and two x^{2} terms.	M1
	$=4+2 x ;+\frac{33}{32} x^{2}+\ldots$	Anything that cancels to $4+2 x ; \frac{33}{32} x^{2}$	$\begin{gathered} \boldsymbol{i} \\ \mathrm{A} 1 ; \mathrm{A} 1 \end{gathered}$
			[4]
			9 marks

Question Number	Scheme		Marks
6. (a)	Lines meet where: $\left(\begin{array}{c} -9 \\ 0 \\ 10 \end{array}\right)+\lambda\left(\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right)=\left(\begin{array}{c} 3 \\ 1 \\ 17 \end{array}\right)+\mu\left(\begin{array}{c} 3 \\ -1 \\ 5 \end{array}\right)$		
	$\text { Any two of } \begin{align*} & \mathbf{i}:-9+2 \lambda=3+3 \mu \tag{1}\\ & \mathbf{j}: \quad \lambda=1-\mu \tag{2}\\ & \mathbf{k}: 10-\lambda=17+5 \mu \tag{3} \end{align*}$	Need any two of these correct equations seen anywhere in part (a).	M1
	(1) - 2(2) gives: $\quad-9=1+5 \mu \quad \Rightarrow \mu=-2$ (2) gives: $\lambda=1--2=3$	Attempts to solve simultaneous equations to find one of either λ or μ Both $\underline{\lambda=3} \& \underline{\mu=-2}$	dM1 A1
	$\mathbf{r}=\left(\begin{array}{c} -9 \\ 0 \\ 10 \end{array}\right)+3\left(\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right) \quad \text { or } \quad \mathbf{r}=\left(\begin{array}{c} 3 \\ 1 \\ 17 \end{array}\right)-2\left(\begin{array}{c} 3 \\ -1 \\ 5 \end{array}\right)$	Substitutes their value of either λ or μ into the line l_{1} or l_{2} respectively. This mark can be implied by any two correct components of $(-3,3,7)$.	ddM1
	Intersect at $\mathbf{r}=\underline{\left(\begin{array}{c}-3 \\ 3 \\ 7\end{array}\right)}$ or $\mathbf{r}=\underline{-3 \mathbf{i}+3 \mathbf{j}+7 \mathbf{k}}$	$\begin{aligned} & \underline{\left(\begin{array}{c} -3 \\ 3 \\ 7 \end{array}\right)} \text { or } \underline{-3 \mathbf{i}+3 \mathbf{j}+7 \mathbf{k}} \\ & \text { or }(-3,3,7) \end{aligned}$	A1
	Either check \mathbf{k} : $\begin{aligned} & \lambda=3: \text { LHS }=10-\lambda=10-3=7 \\ & \mu=-2: \text { RHS }=17+5 \mu=17-10=7 \end{aligned}$ (As LHS = RHS then the lines intersect.)	Either check that $\lambda=3, \mu=-2$ in a third equation or check that $\lambda=3$, $\mu=-2$ give the same coordinates on the other line. Conclusion not needed.	$\begin{aligned} & \text { B1 } \\ & \\ & {[6] }\end{aligned}$
(b)	$\mathbf{d}_{1}=2 \mathbf{i}+\mathbf{j}-\mathbf{k}, \quad \mathbf{d}_{2}=3 \mathbf{i}-\mathbf{j}+5 \mathbf{k}$		
	As $\mathbf{d}_{1} \bullet \mathbf{d}_{2}=\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right) \bullet\left(\begin{array}{c}3 \\ -1 \\ 5\end{array}\right)=\underline{(2 \times 3)+(1 \times-1)+(-1 \times 5)}=0$	Dot product calculation between the two direction vectors: $\frac{(2 \times 3)+(1 \times-1)+(-1 \times 5)}{\text { or } \underline{6-1-5}}$	M1
	Then l_{1} is perpendicular to l_{2}.	Result ' $=0$ ' and appropriate conclusion	A1
			[2]

Question Number	Scheme		Marks
6. (c) Way 1 (d)	Equating $\mathbf{i} ; \quad-9+2 \lambda=5 \Rightarrow \lambda=7$		
	$\mathbf{r}=\left(\begin{array}{c} -9 \\ 0 \\ 10 \end{array}\right)+7\left(\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right)=\left(\begin{array}{l} 5 \\ 7 \\ 3 \end{array}\right)$ ($=\overrightarrow{O A}$. Hence the point A lies on l_{1}.) Let $\overrightarrow{O X}=-3 \mathbf{i}+3 \mathbf{j}+7 \mathbf{k}$ be point of intersection	Substitutes candidate's $\lambda=7$ into the line l_{1} and finds $5 \mathbf{i}+7 \mathbf{j}+3 \mathbf{k}$. The conclusion on this occasion is not needed.	B1
			[1]
(d)	$\overrightarrow{A X}=\overrightarrow{O X}-\overrightarrow{O A}=\underline{\left(\begin{array}{c}-3 \\ 3 \\ 7\end{array}\right)-\left(\begin{array}{l}5 \\ 7 \\ 3\end{array}\right)}=\left(\begin{array}{c}-8 \\ -4 \\ 4\end{array}\right)$	Finding the difference between their $\overrightarrow{O X}$ (can be implied) and $\overrightarrow{O A}$. $\overrightarrow{A X}= \pm\left(\left(\begin{array}{c} -3 \\ 3 \\ 7 \end{array}\right)-\left(\begin{array}{l} 5 \\ 7 \\ 3 \end{array}\right)\right)$	M1 $\sqrt{ \pm}$
	$\overrightarrow{O B}=\overrightarrow{O A}+\overrightarrow{A B}=\overrightarrow{O A}+2 \overrightarrow{A X}$		
	$\overrightarrow{O B}=\left(\begin{array}{l}5 \\ 7 \\ 3\end{array}\right)+2\left(\begin{array}{c}-8 \\ -4 \\ 4\end{array}\right)$	$\left(\begin{array}{l}5 \\ 7 \\ 3\end{array}\right)+2($ their $\overrightarrow{A X})$	dM1 $\sqrt{ }$
	Hence, $\overrightarrow{O B}=\underline{\left(\begin{array}{c}-11 \\ -1 \\ 11\end{array}\right)}$ or $\overrightarrow{O B}=\underline{-11 \mathbf{i}-\mathbf{j}+11 \mathbf{k}}$	$\underline{\left(\begin{array}{c}-11 \\ -1 \\ 11\end{array}\right)}$ or $\underline{-11 \mathbf{i}-\mathbf{j}+11 \mathbf{k}}$	A1
			[3]
			12 marks

Question Number	Scheme		Marks
7. (a)	$\frac{2}{4-y^{2}} \equiv \frac{2}{(2-y)(2+y)} \equiv \frac{A}{(2-y)}+\frac{B}{(2+y)}$		
	$2 \equiv A(2+y)+B(2-y)$ Let $y=-2, \quad 2=B(4) \Rightarrow B=\frac{1}{2}$	Forming this identity. NB: A \& B are not assigned in this question	M1
	Let $y=2, \quad 2=A(4) \Rightarrow A=\frac{1}{2}$ giving $\frac{\frac{1}{2}}{(2-y)}+\frac{\frac{1}{2}}{(2+y)}$	Either one of $A=\frac{1}{2}$ or $B=\frac{1}{2}$ $\frac{\frac{1}{2}}{(2-y)}+\frac{\frac{1}{2}}{(2+y)}$, aef	A1 A1 cao
	(If no working seen, but candidate writes down correct partial fraction then award all three marks. If no working is seen but one of A or B is incorrect then M0A0A0.)		[3]

Question Number	Scheme		Marks
7. (b)	$\begin{aligned} & \int \frac{2}{4-y^{2}} \mathrm{~d} y=\int \frac{1}{\cot x} \mathrm{~d} x \\ & \quad \int \frac{\frac{1}{2}}{(2-y)}+\frac{\frac{1}{2}}{(2+y)} \mathrm{d} y=\int \tan x \mathrm{~d} x \\ & \therefore-\frac{1}{2} \ln (2-y)+\frac{1}{2} \ln (2+y)=\ln (\sec x)+(c) \\ & y=0, x=\frac{\pi}{3} \Rightarrow-\frac{1}{2} \ln 2+\frac{1}{2} \ln 2=\ln \left(\frac{1}{\cos \left(\frac{\pi}{3}\right)}\right)+c \end{aligned}$	Separates variables as shown. Can be implied. Ignore the integral signs, and the ' 2 '.	B1
		$\ln (\sec x) \text { or }-\ln (\cos x)$ Either $\pm a \ln (\lambda-y)$ or $\pm b \ln (\lambda+y)$ their $\int \frac{1}{\cot x} \mathrm{~d} x=$ LHS correct with ft for their A and B and no error with the " 2 " with or without $+c$	B1 M1; A1 $\sqrt{\text { - }}$
		Use of $y=0$ and $x=\frac{\pi}{3}$ in an integrated equation containing c ;	M1*
	$\{0=\ln 2+c \Rightarrow \underline{c=-\ln 2}\}$		
	$-\frac{1}{2} \ln (2-y)+\frac{1}{2} \ln (2+y)=\ln (\sec x)-\ln 2$		
	$\frac{1}{2} \ln \left(\frac{2+y}{2-y}\right)=\ln \left(\frac{\sec x}{2}\right)$	Using either the quotient (or product) or power laws for logarithms CORRECTLY.	M1
	$\ln \left(\frac{2+y}{2-y}\right)=2 \ln \left(\frac{\sec x}{2}\right)$		
	$\ln \left(\frac{2+y}{2-y}\right)=\ln \left(\frac{\sec x}{2}\right)^{2}$	Using the log laws correctly to obtain a single log term on both sides of the equation.	dM1*
	$\frac{2+y}{2-y}=\frac{\sec ^{2} x}{4}$		
	Hence, $\quad \sec ^{2} x=\frac{8+4 y}{2-y}$	$\sec ^{2} x=\frac{8+4 y}{2-y}$	A1 aef
			[8]
			11 marks

Question Number	Scheme		Marks
8. (a)	At $P(4,2 \sqrt{3})$ either $4=8 \cos t$ or $2 \sqrt{3}=4 \sin 2 t$	$4=8 \cos t$ or $2 \sqrt{3}=4 \sin 2 t$	M1
	\Rightarrow only solution is $t=\frac{\pi}{3}$ where 0, ,,$\frac{\pi}{2}$	$t=\frac{\pi}{3}$ or awrt 1.05 (radians) only stated in the range $0, t, \frac{\pi}{2}$	A1
(b)	$x=8 \cos t, \quad y=4 \sin 2 t$		
	$\frac{\mathrm{d} x}{\mathrm{~d} t}=-8 \sin t, \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=8 \cos 2 t$	Attempt to differentiate both x and y wrt t to give $\pm p \sin t$ and $\pm q \cos 2 t$ respectively	M1
		Correct $\frac{\mathrm{dx}}{\mathrm{d} t}$ and $\frac{\mathrm{dy}}{\mathrm{d} t}$	A1
	At $P, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{8 \cos \left(\frac{2 \pi}{3}\right)}{-8 \sin \left(\frac{\pi}{3}\right)}$	Divides in correct way round and attempts to substitute their value of t (in degrees or radians) into their $\frac{d y}{d x}$ expression.	M1*
	$\left\{=\frac{8\left(-\frac{1}{2}\right)}{=}=\frac{1}{=}=\operatorname{wwrt} 0.58\right\}$	You may need to check candidate's substitutions for M1*	
	$\left\{=\frac{-1}{(-8)\left(\frac{\sqrt{3}}{2}\right)}=\frac{}{\sqrt{3}}=\operatorname{awrt} 0.58\right\}$	Note the next two method marks are dependent on M1*	
	$\text { Hence } m(\mathbf{N})=-\sqrt{3} \text { or } \frac{-1}{\frac{1}{\sqrt{3}}}$	$\text { Uses } \mathrm{m}(\mathbf{N})=-\frac{1}{\text { their } \mathrm{m}(\mathbf{T})} \text {. }$	dM1*
	N: $y-2 \sqrt{3}=-\sqrt{3}(x-4)$	Uses $y-2 \sqrt{3}=\left(\right.$ their $\left.m_{N}\right)(x-4)$ or finds c using $x=4$ and $\begin{array}{r} y=2 \sqrt{3} \text { and uses } \\ y=\left(\text { their } \mathrm{m}_{N}\right) x+" c " . \end{array}$	dM1*
	$\mathbf{N}: y=-\sqrt{3} x+6 \sqrt{3} \quad \mathbf{A G}$	$\underline{y}=-\sqrt{3} x+6 \sqrt{3}$	A1 cso AG
	or $\quad 2 \sqrt{3}=-\sqrt{3}(4)+c \Rightarrow c=2 \sqrt{3}+4 \sqrt{3}=6 \sqrt{3}$ so $\mathbf{N}:[y=-\sqrt{3} x+6 \sqrt{3}]$		
			[6]

June 2008
Further Pure Mathematics FP1 Mark Scheme

Question number	Scheme	Mark
3.	(a) $z=\frac{(a+2 \mathrm{i})(a+\mathrm{i})}{(a-\mathrm{i})(a+\mathrm{i})}=\frac{a^{2}+3 a \mathrm{i}-2}{a^{2}+1}$ $\frac{a^{2}-2}{a^{2}+1}=\frac{1}{2}, \quad 2 a^{2}-4=a^{2}+1 \quad a=\sqrt{5} \quad$ (presence of $-\sqrt{5}$ also is A 0) (b) Evaluating their " $\frac{3 a}{a^{2}+1}$ ", or " $3 a$ " $\left(\frac{\sqrt{5}}{2}\right.$ or $\left.3 \sqrt{5}\right)$ (ft errors in part a) $\tan \theta=\frac{3 a}{a^{2}-2} \quad\left(=\frac{3 \sqrt{5}}{3}\right), \arg z=1.15 \quad$ (accept answers which round to 1.15) M	M1 A1 M1, A1 (4 B1 ft 1, A1 (3)
	(b) B mark is treated here as a method mark The M1 is for $\tan (\operatorname{argz})=$ Imaginary part / real part answer in degrees is A0 Alternative method: $\begin{aligned} & \text { (a) }\left(\frac{1}{2}+\mathrm{i} y\right)(a-\mathrm{i})=a+2 \mathrm{i} \Rightarrow \frac{1}{2} a+y=a \text { and } a y-\frac{1}{2}=2 \\ & \quad y=\frac{1}{2} a \text { and } a y=\frac{5}{2} \Rightarrow \frac{1}{2} a^{2}=\frac{5}{2} \Rightarrow a=\sqrt{5} \\ & \text { (b) } y=\frac{\sqrt{5}}{2} \quad \quad \text { (May be seen in part (a)) } \\ & \quad \tan \theta=\sqrt{5} \quad \arg z=1.15 \\ & \text { Further Alternative method in }(\mathrm{b}) \\ & \text { Use } \arg (a+2 \mathrm{i})-\arg (a-\mathrm{i}) \\ & =0.7297-(-0.4205)=1.15 \end{aligned}$	M1 A1 M1 A1 (4) B1ft M1 A1 (3) B1 M1A1 (3) 7

Question number	Scheme	Marks
4.	(a) $m^{2}+4 m+3=0 \quad m=-1, m=-3$ C.F. $(x=) A \mathrm{e}^{-t}+B \mathrm{e}^{-3 t} \quad$ must be function of $t, \operatorname{not} x$ $\begin{aligned} & \text { P.I. } x=p t+q \quad\left(\text { or } \quad x=a t^{2}+b t+c\right) \\ & 4 p+3(p t+q)=k t+5 \quad 3 p=k \quad(\text { Form at least one eqn. in } p \text { and/or } q) \\ & \\ & 4 p+3 q=5 \\ & p=\frac{k}{3}, \quad q=\frac{5}{3}-\frac{4 k}{9}\left(=\frac{15-4 k}{9}\right) \end{aligned}$ General solution: $x=A \mathrm{e}^{-t}+B \mathrm{e}^{-3 t}+\frac{k t}{3}+\frac{15-4 k}{9}$ must include $\mathrm{x}=$ and be function (7) (b) When $k=6, \quad x=2 t-1$	M1 A1 A1 B1 M1 A1 ft A1 ft M1 A1cao (2)
	(a) M1 for auxiliary equation substantially correct B1 not awarded for $x=k t+$ constant (b) M mark for using $k=6$ to derive a linear expression in t. (cf must have involved negative exponentials only) so e.g. $y=2 t-1$ is M1 A0	

Question number	Scheme	Marks
6.	(a) $\frac{2}{(r+1)(r+3)}=\frac{1}{r+1}-\frac{1}{r+3}$ $\mathrm{M}: \frac{2}{(r+1)(r+3)}=\frac{A}{r+1}+\frac{B}{r+3}$ (b) $\begin{array}{rlrl}r & =1: & \left(\frac{2}{2 \times 4}\right)=\frac{1}{2}-\frac{1}{4} \\ r & =2: & \left(\frac{2}{3 \times 5}\right)=\frac{1}{3}-\frac{1}{5} \\ \ldots r & =n-1: & \left(\frac{2}{n(n+2)}\right)=\frac{1}{n}-\frac{1}{n+2} \\ r & =n: \quad\left(\frac{2}{(n+1)(n+3)}\right)=\frac{1}{n+1}-\frac{1}{n+3}\end{array}$ Summing: $\quad \sum=\frac{1}{2}+\frac{1}{3}-\frac{1}{n+2}-\frac{1}{n+3}$ $=\frac{5(n+2)(n+3)-6(n+3)-6(n+2)}{6(n+2)(n+3)}=\frac{n(5 n+13)}{6(n+2)(n+3)}$ (c) $\sum_{21}^{30}=\sum_{1}^{30}-\sum_{1}^{20}=\frac{30 \times 163}{6 \times 32 \times 33}-\frac{20 \times 113}{6 \times 22 \times 23}, \quad=0.02738$	M1 A1 (2) M1 A1 ft M1 A1 d M1A1cso 6 M1A1ftA1cso3 (11)
	(b) The first M1 requires list of first two and last two terms The A1 must be correct but ft on their A and B The second M1 requires terms to be eliminated and A1 is cao (c) The M mark is also allowed for $\sum_{1}^{30}-\sum_{1}^{21}$ applied with numbers included Using $u_{30}-u_{20}$ scores M0 A0 A0 The first A1 is ft their A and B or could include A and B, but final A 1 is cao but accept 0.027379775599 to 5 or more decimal places..	

Question number	Scheme	Marks
7.	(a) $\begin{align*} & \frac{\mathrm{d} y}{\mathrm{~d} x}=v+x \frac{\mathrm{~d} v}{\mathrm{~d} x} \\ & \left(v+x \frac{\mathrm{~d} v}{\mathrm{~d} x}\right)=\frac{x}{v x}+\frac{3 v x}{x} \Rightarrow x \frac{\mathrm{~d} v}{\mathrm{~d} x}=2 v+\frac{1}{v} \tag{*} \end{align*}$ $\begin{aligned} & \text { (b) } \int \frac{v}{1+2 v^{2}} \mathrm{~d} v=\int \frac{1}{x} \mathrm{~d} x \\ & \frac{1}{4} \ln \left(1+2 v^{2}\right), \quad=\ln x(+C) \\ & A x^{4}=1+2 v^{2} \\ & A x^{4}=1+2\left(\frac{y}{x}\right)^{2} \text { so } y=\sqrt{\frac{A x^{6}-x^{2}}{2}} \text { or } y=x \sqrt{\frac{A x^{4}-1}{2}} \text { or } y=x \sqrt{\left(\frac{1}{2} e^{4 \ln x+4 c}-\frac{1}{2}\right)} \end{aligned}$ (b) (c) $x=1$ at $y=3$: $\begin{array}{r} 3=\sqrt{\frac{A-1}{2}} \\ =x \sqrt{\frac{19 x^{4}-1}{2}} \end{array}$ $y=\sqrt{\frac{19 x^{6}-x^{2}}{2}} \quad \text { or } y=x \sqrt{\frac{19 x^{4}-1}{2}}$	B1 M1 A1 (3) M1 dM1 A1, B1 d M1 M1 A1 (7) M1 A1 (2) 12
	(a) B1 for statement printed or for $\frac{d y}{d x}=\left(x+v \frac{d x}{d v}\right) \frac{d v}{d x}$ First M1 is for RHS of equation only but for A1 need whole answer correct . (b) First M1 accept $\int \frac{1}{2 v+\frac{1}{v}} \mathrm{~d} v=\int \frac{1}{x} \mathrm{~d} x$ Second M1 requires an integration of correct form $1 / 4$ may be missing A1 for LHS correct with $1 / 4$ and B 1 is independent and is for $\ln x$ Third M1 is dependent and needs correct application of log laws Fourth M1 is independent and merely requires return to y / x for v N.B. There is an IF method possible after suitable rearrangement - see note.	

Question number	Scheme	Marks
8.	(a) $r \cos \theta=4\left(\cos \theta-\cos ^{2} \theta\right)$ or $r \cos \theta=4 \cos \theta-2 \cos 2 \theta-2$ $\frac{\mathrm{d}(r \cos \theta)}{\mathrm{d} \theta}=4(-\sin \theta+2 \cos \theta \sin \theta) \text { or } \frac{\mathrm{d}(r \cos \theta)}{\mathrm{d} \theta}=4(-\sin \theta+\sin 2 \theta)$ $4(-\sin \theta+2 \cos \theta \sin \theta)=0 \Rightarrow \cos \theta=\frac{1}{2}$ which is satisfied by $\theta=\frac{\pi}{3}$ and $r=2$ (*) * $\text { (b) } \begin{aligned} & \frac{1}{2} \int r^{2} \mathrm{~d} \theta=(8) \int\left(1-2 \cos \theta+\cos ^{2} \theta\right) \mathrm{d} \theta \\ &=(8)\left[\theta-2 \sin \theta+\frac{\sin 2 \theta}{4}+\frac{\theta}{2}\right] \\ & 8\left[\frac{3 \theta}{2}-2 \sin \theta+\frac{\sin 2 \theta}{4}\right]_{\pi / 3}^{\pi / 2}=8\left(\left(\frac{3 \pi}{4}-2\right)-\left(\frac{\pi}{2}-\sqrt{3}+\frac{\sqrt{3}}{8}\right)\right)=2 \pi-16+7 \sqrt{3} \end{aligned}$ Triangle: $\frac{1}{2}(r \cos \theta)(r \sin \theta)=\frac{1}{2} \times 1 \times \sqrt{3}=\frac{\sqrt{3}}{2}$ Total area: $(2 \pi-16+7 \sqrt{3})+\frac{\sqrt{3}}{2}=(2 \pi-16)+\frac{15 \sqrt{3}}{2}$	M1 M1 A1 M1 A1 M1 M1 A1 M1 M1 A1 (A1) A1 (8)
	(a) Alternative for first 3 marks: $\begin{aligned} & \frac{\mathrm{d} r}{\mathrm{~d} \theta}=4 \sin \theta \\ & \frac{\mathrm{~d} x}{\mathrm{~d} \theta}=-r \sin \theta+\cos \theta \frac{\mathrm{d} r}{\mathrm{~d} \theta}=-4 \sin \theta+8 \sin \theta \cos \theta \end{aligned}$ Substituting $\mathrm{r}=2$ and $\theta=\frac{\pi}{3}$ into original equation scores 0 marks. (b) M1 needs attempt to expand $(1-\cos \theta)^{2}$ giving three terms (allow slips) Second M1 needs integration of $\cos ^{2} \theta$ using $\cos 2 \theta \pm 1$ Third M1 needs correct limits- may evaluate two areas and subtract M1 needs attempt at area of triangle and A1 for cao Next A1 is for value of area within curve, then final A1 is cao, must be exact but allow 4 terms and isw for incorrect collection of terms Special case for use of risin θ gives B0M1A0M0A0	

Further Pure Mathematics FP2

Mark Scheme

Question number	Scheme	Marks
1.	$\begin{align*} & \frac{\mathrm{d}}{\mathrm{~d} x}(\ln (\tanh x))=\frac{\operatorname{sech}^{2} x}{\tanh x} \\ & =\frac{1}{\sinh x \cosh x}=\frac{2}{\sinh 2 x}=2 \operatorname{cosech} 2 x \tag{*} \end{align*}$ Notes 1M1 Any valid differentiation attempt including $\ln \left(e^{x}-e^{-x}\right)-\ln \left(e^{x}+e^{-x}\right)$ 1A1 c.a.o. (o.e e.g. $\frac{\cosh x}{\sinh x}-\frac{\sinh x}{\cosh x}$) 2M1 Proceeding to a hyperbolic expression in $2 x$ 2A1 c.s.o.	M1 A1 M1 A1

Question number	Scheme	Marks
2.	$\begin{aligned} & 8\left(\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}\right)-4\left(\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}\right)=13 \\ & 4 \mathrm{e}^{x}+4 \mathrm{e}^{-x}-2 \mathrm{e}^{x}+2 \mathrm{e}^{-x}=13 \\ & 2 \mathrm{e}^{2 x}-13 \mathrm{e}^{x}+6=0 \quad \quad \text { (or equiv.) } \\ & \left(2 \mathrm{e}^{x}-1\right)\left(\mathrm{e}^{x}-6\right)=0 \\ & \mathrm{e}^{x}=\frac{1}{2}, \quad \mathrm{e}^{x}=6 \\ & x=\ln \frac{1}{2}(\text { or }-\ln 2), \quad x=\ln 6 \end{aligned}$ Notes B1 Correctly substituting exponentials for all hyperbolics 1M1 To a three term quadratic in e^{x} 1A1 c.a.o. (o.e.) 2M1 Solving their equation to $e^{x}=$ 2A1ft f.t. their equation. 3A1 c.a.o.	B1 M1 A1 M1 A1ft A1 (6)

Question number	Scheme	Marks
5.		M1 A1
		M1 A1
		B1
		M1
		M1 A1 (8)
		M1, A1
		M1, A1 (4)
	(a)1M1 Complete attempt to use parts once in the right direction need $\sin ^{n-1} x$ 1A1 cao 2M1 Attempt to use parts again with sensible choice of parts, not reversing. Need to be differentiating a product. 2A1 cao 1B1 both $=0$ at some point. (doesn't need to be correct, must must $=0$) 3DM1 $\mathrm{I}_{n}=$ expressions in $\int e^{x} \sin ^{k} x d x$ Depends on $\mathbf{2}^{\text {nd }} \mathbf{M}$ 4DM1Expresssion in I_{n} and I_{n-2} to $I_{n}=$. Depends on $\mathbf{3}^{\text {rd }} \mathbf{M}$ 3A1 c.s.o. (b) $\mathbf{1 M 1} \mathrm{I}_{4}$ in terms of I_{2} 1A1 I_{4} correctly in terms of I_{0} [o.e.] 2M1 $\int e^{x} d x$ 2A1 c.a.o for I_{4}.	

Question number	Scheme	Marks
6.	(a) $\begin{align*} & \int \cosh x \arctan (\sinh x) \mathrm{d} x=\sinh x \arctan (\sinh x)-\int \sinh x \frac{\cosh x}{1+\sinh ^{2} x} \mathrm{~d} x \\ & =\sinh x \arctan (\sinh x)-\frac{1}{2} \ln \left(1+\sinh ^{2} x\right)(+C) \\ & \text { Or: } \quad \ldots \ldots \ldots \ldots . .-\int \tanh x \mathrm{~d} x \\ & =\sinh x \arctan (\sinh x)-\ln (\cosh x)(+C) \end{align*}$ Alternative: Let $t=\sinh x, \quad \frac{\mathrm{~d} t}{\mathrm{~d} x}=\cosh x, \quad \int \arctan t \mathrm{~d} t=t \arctan t-\int \frac{t}{1+t^{2}} \mathrm{~d} t$ $\begin{equation*} =\ldots \ldots-\frac{1}{2} \ln \left(1+t^{2}\right) \tag{M1} \end{equation*}$ $=\sinh x \arctan (\sinh x)-\frac{1}{2} \ln \left(1+\sinh ^{2} x\right)(+C) \quad \text { (or equiv.) }$ (b) $\frac{1}{10}[\sinh x \arctan (\sinh x)-\ln (\cosh x)]_{0}^{2}=$. \qquad	M1 A1 A1 M1 A1 (5) M1, A1 (2)
	(a) Alternative: Let $\begin{array}{rll} \text { et } \tan t=\sinh x, \sec ^{2} t \frac{\mathrm{~d} t}{\mathrm{~d} x}=\cosh x, \int t \sec ^{2} t \mathrm{~d} t=t \tan t-\int \tan t \mathrm{~d} t & \text { M1 A1 A1 } \\ =\ldots . .-\ln (\sec t) & \text { M1 } \\ =\sinh x \arctan (\sinh x)-\ln \sqrt{1+\sinh ^{2} x}(+C) \quad \text { (or equiv.) } & \text { A1 } \end{array}$ Notes (a)1M1 Complete attempt to use parts 1A1 One term correct. 2A1 All correct. 2M1 All integration completed. Need a \ln term. 3A1 c.a.o. (in x) o.e, any correct form, simplified or not (b)1M1 Use of limits 0 and 2 and 1/10. 1A1 c.s.o.	

Question number	Scheme	Mark		
7.	$\begin{array}{ll} \text { (a) } \begin{array}{ll} \frac{2 x}{16}-\frac{2 y}{9} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 & {\left[\frac{\mathrm{~d} x}{\mathrm{~d} t}=4 \sec t \tan t, \frac{\mathrm{~d} y}{\mathrm{~d} t}=3 \sec ^{2} t\right]} \\ \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{9 x}{16 y}=\frac{36 \sec t}{48 \tan t}=\frac{3}{4 \sin t} \\ y-3 \tan t=\frac{-4 \sin t}{3}(x-4 \sec t) & \\ 4 x \sin t+3 y=25 \tan t \end{array} \end{array}$ (b) Using $b^{2}=a^{2}\left(e^{2}-1\right): \quad a e=\sqrt{a^{2}+b^{2}}=5 \quad$ or $\mathrm{e}=\frac{5}{4}$ $P: \quad 4 \sec t=5 \quad \cos t=\frac{4}{5}$ Coordinates of $P:(4 \sec t, 3 \tan t)=\left(5, \frac{9}{4}\right)$ (c) $R: \quad x=\frac{25 \tan t}{4 \sin t}=\frac{125}{16}$ Area of $P R S: \quad \frac{1}{2}(S R \times S P)=\frac{1}{2} \times\left(\frac{125}{16}-5\right) \times \frac{9}{4}=\frac{405}{128}\left(=3 \frac{21}{128}\right)$ Notes (a)1M1 Differentitating 1A1 c.a.o. 2M1 $\frac{d y}{d x}$ in terms of t. 2A1 c.a.o. 3M1 Substituting gradient of normal into straight line equation. 3A1 c.s.o. (b)1M1 Use of $b^{2}=a^{2}\left(e^{2}-1\right)$ 1A1 c.a.o. for ae or for e 2M1 Using x coordinate of focus $=x$ coordinate of P , to get single term $f(t)=$ constant. (Allow recovery in (c)) 3M1 Substituting into P coordinates to a number for x and for y. 2A1c.a.o. (c)1M1 Attempt to find x coordinate of R. 2M1 Substituting into correct template i.e. $1 / 2 \mathrm{x} \mid$ their $\mathrm{R}_{\mathrm{x}}-$ their $\mathrm{H}_{\mathrm{x}} \mid \mathrm{x}$ their P_{y} 1A1 c.a.o. 3 s.f. or better.	M1 A1		
		M1		
		A1	(6)	
		M1 A1		
		M1		
		M1 A1	(5)	
		M1 A1	(3)	

Question number	Scheme	Marks
8.	(a) $\dot{x}=3+3 \cos t \quad \dot{y}=3 \sin t$ $\begin{equation*} \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\dot{y}}{\dot{x}}=\frac{\sin t}{1+\cos t}=\frac{2 \sin t / 2 \cos t / 2}{2 \cos ^{2} t / 2}=\tan \frac{t}{2} \tag{*} \end{equation*}$ (b) $s=\int \sqrt{\dot{x}^{2}+\dot{y}^{2}} \mathrm{~d} t=3 \sqrt{2} \int \sqrt{1+\cos t} \mathrm{~d} t$ $\begin{equation*} =6 \int_{0}^{t} \cos \frac{t}{2} \mathrm{~d} t=12 \sin \frac{t}{2} \quad(\text { Limits or establish } C=0 \text { for } \mathrm{A} 1) \tag{*} \end{equation*}$ (c) $\tan \psi=\tan \frac{t}{2} \Rightarrow \psi=\frac{t}{2} \Rightarrow s=12 \sin \psi$ (d) Surface area $=\int_{0}^{t} 2 \pi y \sqrt{\dot{x}^{2}+\dot{y}^{2}} \mathrm{~d} t=18 \sqrt{2} \pi \int(1-\cos t) \sqrt{1+\cos t} \mathrm{~d} t$ $\begin{aligned} & =72 \pi \int \sin ^{2} \frac{t}{2} \cos \frac{t}{2} \mathrm{~d} t \\ & =\ldots \ldots \ldots . .\left(\frac{2}{3} \sin ^{3} \frac{t}{2}\right) \end{aligned}$ But $\sin \frac{t}{2}=\frac{s}{12}=\frac{L}{12}, \quad$ so surface area $=\frac{144 \pi}{3} \times \frac{L^{3}}{12^{3}}=\frac{\pi L^{3}}{36}$ (a)1B1 both 1M1 Attempt at y^{\prime} / x^{\prime} 1A1 cso - on paper need to see half angles (b)1M1 Attempt at arc length, integral formula 1A1 cao follow through on their x ' and y ' one variable only 2M1 Integrating 2A1 cso - on paper (c) 1B1 cao (d) 1M1 Attempt at Surface area, integral formula.Condone lack of 2π. 1A1 cao follow through on their x ' and y ' condone lack of 2π. one variable only 2DM1Getting to integrable form condone lack of 2π. Depends on previous M mark. 3DM1 integrating condone lack of 2π. Depends on previous M mark. 2A1cao 4DM1Eliminating t to give expression in L only Depends on previous M mark. 3A1 cso - on paper.	B1 M1 A (3) M1 A1ft M1 A (4) B1 (1) M1 A1ft M1 M1 A1 M1 A (7)

6676 Further Pure Mathematics FP3
 Mark Scheme

Question Number	Scheme	Marks
1.		B1 M1 A1 A1ft M1 A1
	Degree mode in calculator: Gives answers: 0.6500 ($0.64999 \ldots$...) 0.7025 ($0.70248 \ldots$) This can score B1 M1 A0 A1ft M1 A0	

Question Number	Scheme	Marks
2. (a) ${ }^{(1)}$ (b)	$\left(\begin{array}{lll}1 & p & 2 \\ 0 & 3 & q \\ 2 & p & 1\end{array}\right)\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)=\lambda\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right) \quad\left(\begin{array}{c}1+2 p+2 \\ 6+q \\ 2+2 p+1\end{array}\right)=\left(\begin{array}{c}\lambda \\ 2 \lambda \\ \lambda\end{array}\right)$ is M1 A1 (2 eqns implied) $\left(\begin{array}{c}3+2 p \\ 6+q \\ 3+2 p\end{array}\right) \Rightarrow 6+q=2(3+2 p)$ is M1 A1 (2 eqns, use of parameter implied) $1+2 p+2=\lambda$ $1+2 p+2=\lambda \quad 6+q=2 \lambda \quad$ M: Two equations, one in p, one in q $\begin{equation*} \therefore 6+q=6+4 p \Rightarrow q=4 p \tag{*} \end{equation*}$	$\begin{aligned} & \text { M1 A1 } \\ & \text { A1 (3) } \end{aligned}$
	$\begin{aligned} & \left\|\begin{array}{ccc} -4 & p & 2 \\ 0 & -2 & 4 p \\ 2 & p & -4 \end{array}\right\|=0 \text { or }\left\|\begin{array}{ccc} 1-\lambda & p & 2 \\ 0 & 3-\lambda & 4 p \\ 2 & p & 1-\lambda \end{array}\right\|=0 \quad \text { (or with } q \text { instead of } 4 p \text {) } \\ & {\left[\begin{array}{l} {\left[-4\left(8-4 p^{2}\right)-p(0-8 p)+2(0+4)=0\right]} \end{array} \quad \begin{array}{l} p^{2}=1 \quad \text { or } p q=4 \\ p<0 \\ p=-1 \\ q=-4 \end{array}\right.} \\ & \begin{array}{l} \text { M: Use } q=4 p \text { to find value of } p \text { and of } q \\ \text { A1: Positive values must be rejected } \end{array} \end{aligned}$	M1 A1 dM1 A1 (4)
	$-4 x-y+2 z=0,-2 y-4 z=0,2 x-y-4 z=0$ Any 2 eqns, with value of p $2 x=-y=2 z$ (or 2 separate equations) E.vector is $k\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)$ (Any non-zero value of k)	M1 M1 A1 (3) (10)
	(a) Assuming a value for λ, e.g. $\lambda=1$, gives M1 A0 A0. (a) Assuming result and working 'backwards': $\left(\begin{array}{ccc} 1 & p & 2 \\ 0 & 3 & 4 p \\ 2 & p & 1 \end{array}\right)\left(\begin{array}{l} 1 \\ 2 \\ 1 \end{array}\right)=\left(\begin{array}{l} 3+2 p \\ 6+4 p \\ 3+2 p \end{array}\right)=(3+2 p)\left(\begin{array}{l} 1 \\ 2 \\ 1 \end{array}\right), \quad \text { gives M1 A0 A0 }$ (b) Alternative: $\begin{aligned} & \left(\begin{array}{ccc} 1 & p & 2 \\ 0 & 3 & 4 p \\ 2 & p & 1 \end{array}\right)\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=5\left(\begin{array}{l} x \\ y \\ z \end{array}\right) \text { or }\left(\begin{array}{ccc} -4 & p & 2 \\ 0 & -2 & 4 p \\ 2 & p & -4 \end{array}\right)\left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\left(\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right) \text { (or } q \text { instead of } 4 p \text {) } \\ & x+p y+2 z=5 x, 3 y+4 p z=5 y, 2 x+p y+z=5 z \\ & p y+2 z=4 x(\text { i), } 2 p z=y \text { (ii), } 2 x+p y=4 z \text { (iii) } \\ & \begin{array}{l} \text { From (i) and (iii) } p y=2 z \\ \text { From (ii) } \end{array} p^{2}=1 \quad \text { (or equiv. in terms of } p \text { and/or } q \text {) } \end{aligned}$ $p<0, p=-1, q=-4 \quad \text { A1: Positive values must be rejected }$ (b) Using the eigenvector $\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$ scores no marks in this part.	M1 A1 dM1 A1

Question Number	Scheme	Marks
3. (a)	$\begin{gather*} \left(x^{2}+1\right) \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}+2 x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=4 y \frac{\mathrm{~d} y}{\mathrm{~d} x}+(1-2 x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x} \\ \left(x^{2}+1\right) \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=(1-4 x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+(4 y-2) \frac{\mathrm{d} y}{\mathrm{~d} x} \tag{*} \end{gather*}$	M1 A1 A1 (3)
(b)	$\begin{array}{ll} \left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)_{0}=3 \\ \left(\frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}\right)_{0}=5 & \text { Follow through: } \frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+2 \\ y=1+x+\frac{3}{2} x^{2}+\frac{5}{6} x^{3} \ldots . & \\ \hline \end{array}$	B1 B1ft M1 A1 (4)
(c)	$\begin{aligned} x=-0.5, \quad y & \approx 1-0.5+0.375-0.104166 \ldots \\ & =0.77(2 \text { d.p. }) \end{aligned}$ [awrt 0.77]	B1 (1)
	(a) M: Use of product rule (at least once) and implicit differentiation (at least once). (b) M: Use of series expansion with values for the derivatives (can be allowed without the first term 1, and can also be allowed if final term uses 3 rather than 3 !)	

4. (a)	$\begin{gathered} \|(x-3)+\mathrm{i} y\|=2\|x+\mathrm{i} y\| \Rightarrow(x-3)^{2}+y^{2}=4 x^{2}+4 y^{2} \\ \therefore x^{2}+y^{2}+2 x-3=0 \\ (x+1)^{2}+y^{2}=4 \\ \text { Centre }(-1,0), \quad \text { radius } 2 \end{gathered}$	M1 A1 $\begin{aligned} & \text { M1 } \\ & \text { A1, A1 (5) } \\ & \hline \end{aligned}$
	 Circle, centre on x-axis B1 $C(-1,0), r=2 \quad \mathrm{~dB} 1 \mathrm{ft}$ Follow through centre and radius, but dependent on first B1. There must be indication of their ' -3 ', ' -1 ' or ' 1 ' on the x axis and no contradictory evidence for their radius. Straight line Straight line through $(-1,0)$, or perp. bisector of $(-3,0)$ and $(0$, $\sqrt{3}$). B1 Straight line through point of int. of circle \&-ve y-axis, or through $(0,-\sqrt{3})$	B1 dB1 B1 B1 B1 (5)
(c)	Shading (only) inside circle Inside correct circle and all of the correct side of the correct line... this mark is dependent on all the previous B marks in parts (b) and (c).	B1 dB1 (2) (12)
	(a) $1^{\text {st }} \mathrm{M}$: Use $z=x+\mathrm{i} y$, and attempt square of modulus of each side. Not squaring the 2 on the RHS would be M1 A0. $2^{\text {nd }} \mathrm{M}$: Attempting to express in the form $(x-a)^{2}+(y-b)^{2}=k$, or attempting centre and radius from the form $x^{2}+y^{2}+2 g x+2 f y+c=0$	

Question Number	Scheme	Marks
5. (a)	$\begin{gathered} \left(\begin{array}{cc} k & -2 \\ 1-k & k \end{array}\right)\binom{t}{2 t}=\binom{t(k-4)}{t(1+k)} \\ t(1+k)=2 t(k-4) \\ k=9 \end{gathered}$	M1 dM1 A1 (3)
(b)	$\operatorname{det} \mathbf{A}$ $=k^{2}+2(1-k)$ (Must be seen in part (b)) $=(k-1)^{2}+1$, which is always positive \mathbf{A} is non-singular	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { M1 } \\ \text { A1cso (3) } \\ \hline \end{array}$
(c)	$\mathbf{A}^{-1}=\frac{1}{k^{2}-2 k+2}\left(\begin{array}{cc}k & 2 \\ k-1 & k\end{array}\right)$	M1 A1 (2)
(d)	$\begin{aligned} & k=3, \quad \mathbf{A}^{-1}=\frac{1}{5}\left(\begin{array}{ll} 3 & 2 \\ 2 & 3 \end{array}\right) \\ & \mathbf{A p}=\mathbf{q} \Rightarrow \mathbf{p}=\mathbf{A}^{-1} \mathbf{q} \quad \mathbf{p}=\frac{1}{5}\left(\begin{array}{ll} 3 & 2 \\ 2 & 3 \end{array}\right)\binom{4}{-3}=\frac{1}{5}\binom{6}{-1} \\ & \text { Alt. }\left(\begin{array}{cc} 3 & -2 \\ -2 & 3 \end{array}\right)\binom{x}{y}=\binom{4}{-3} \Rightarrow 3 x-2 y=4,-2 x+3 y=-3 \quad \text { B1 } \end{aligned}$ M1 A1 for solving two sim. eqns. in x and y to give $x=1.2, y=-0.2$ (o.e.)	B1 M1 A1 (3) (11)
	(b) $2^{\text {nd }} \mathrm{M}$: Alternative is to use quadratic formula on the quadratic equation, or to use the discriminant, with a comment about 'no real roots', or 'can't equal zero', or a comment about the condition for singularity. $\left(x=\frac{2 \pm \sqrt{4-8}}{2}\right)$ A1 Conclusion. (c) M: Need $\frac{1}{\text { their } \operatorname{det} \mathrm{A}}, k$'s unchanged and attempt to change sign for either -2 (leaving as top right) or $1-k$ (leaving as bottom left). (d) M: Requires an attempt to multiply the matrices.	

Question Number	Scheme	Marks
6. (a)	$(\cos \theta+\mathrm{i} \sin \theta)^{1}=\cos \theta+\mathrm{i} \sin \theta \quad \therefore \text { true for } n=1$ Assume true for $n=k,(\cos \theta+\mathrm{i} \sin \theta)^{k}=\cos k \theta+\mathrm{i} \sin k \theta$ $(\cos \theta+\mathrm{i} \sin \theta)^{k+1}=(\cos k \theta+\mathrm{i} \sin k \theta)(\cos \theta+\mathrm{i} \sin \theta)$ $=\cos k \theta \cos \theta-\sin k \theta \sin \theta+\mathrm{i}(\sin k \theta \cos \theta+\cos k \theta \sin \theta)$ (Can be achieved either from the line above or the line below) $=\cos (k+1) \theta+\mathrm{i} \sin (k+1) \theta$ Requires full justification of $(\cos \theta+\mathrm{i} \sin \theta)^{k+1}=\cos (k+1) \theta+\mathrm{i} \sin (k+1) \theta$ $(\therefore$ true for $n=k+1$ if true for $n=k) \quad \therefore$ true for $n \in \mathbb{Z}^{+}$by induction	B1 M1 M1 A1 A1cso (5)
(b)	$\begin{align*} \cos 5 \theta & =\operatorname{Re}\left[(\cos \theta+\mathrm{i} \sin \theta)^{5}\right] \\ & =\cos ^{5} \theta+10 \cos ^{3} \theta \mathrm{i}^{2} \sin ^{2} \theta+5 \cos \theta \mathrm{i}^{4} \sin ^{4} \theta \\ & =\cos ^{5} \theta-10 \cos ^{3} \theta \sin ^{2} \theta+5 \cos \theta \sin ^{4} \theta \\ & =\cos ^{5} \theta-10 \cos ^{3} \theta\left(1-\cos ^{2} \theta\right)+5 \cos \theta\left(1-\cos ^{2} \theta\right)^{2} \\ \cos 5 \theta & =16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta \tag{*} \end{align*}$	M1 A1 M1 M1 A1cso (5)
(c)		M1 A1 A1 (3) (13)
	(a) Alternative: For the $2^{\text {nd }}$ M mark: $\left(e^{i k \theta}\right)\left(e^{i \theta}\right)=e^{i \theta(k+1)}$ (b) Alternative: $\begin{align*} \left(z+\frac{1}{z}\right)^{5} & =z^{5}+5 z^{4}\left(\frac{1}{z}\right)+10 z^{3}\left(\frac{1}{z}\right)^{2}+10 z^{2}\left(\frac{1}{z}\right)^{3}+5 z\left(\frac{1}{z}\right)^{4}+\left(\frac{1}{z}\right)^{5} \quad \mathrm{M} 1 \\ & =2 \cos 5 \theta+10 \cos 3 \theta+20 \cos \theta \tag{A1}\\ (2 \cos \theta)^{5} & =\ldots \ldots . \text { and attempt to put } \cos 3 \theta \text { in powers of } \cos \theta \end{align*}$ Correct method (or formula) for putting $\cos 3 \theta$ in powers of $\cos \theta$ M1 $\cos 5 \theta=16 \cos ^{5} \theta-20 \cos ^{3} \theta+5 \cos \theta$ A1cso (c) Alternatives: (i) Substitute given root into $x^{4}-5 x^{2}+5$: $\left(2 \cos \frac{\pi}{10}\right)^{4}-5\left(2 \cos \frac{\pi}{10}\right)^{2}+5=2^{4}\left(\cos \frac{\pi}{10}\right)^{4}-5 \times 2^{2}\left(\cos \frac{\pi}{10}\right)^{2}+5$ 'Multiply by $\cos \theta$ ' and use result from part (b): $\ldots=\cos \frac{5 \pi}{10}$ $=0 \text { and conclusion }$ (ii) Use $5 \theta=\frac{\pi}{2}$ in result from part (b) $16\left(\cos \frac{\pi}{10}\right)^{5}-20\left(\cos \frac{\pi}{10}\right)^{3}+5\left(\cos \frac{\pi}{10}\right) \text { and divide by } \cos \theta$ $=0 \text { and conclusion }$ A1	

Question Number	Scheme	Marks
7. $\begin{array}{r}\text { (a) } \\ \\ \\ (\mathrm{b}) \\ \\ (\mathrm{c}) \\ \\ \\ \text { (d) } \\ \text { (e) }\end{array}$	$\begin{aligned} & \overrightarrow{P Q}=\mathbf{i}-\mathbf{j}+2 \mathbf{k}, \quad \overrightarrow{P R}=2 \mathbf{i}-3 \mathbf{j}+3 \mathbf{k} \\ & \quad \overrightarrow{P Q} \times \overrightarrow{P R}=\left\|\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & 2 \\ 2 & -3 & 3 \end{array}\right\|=3 \mathbf{i}+\mathbf{j}-\mathbf{k} \end{aligned}$	B1 M1 A1 (3)
	$\mathbf{r} \cdot(3 \mathbf{i}+\mathbf{j}-\mathbf{k})=(\mathbf{i}-\mathbf{k}) \cdot(3 \mathbf{i}+\mathbf{j}-\mathbf{k})$ [may use $\overrightarrow{O Q}$ or $\overrightarrow{O R}]$ $\mathbf{r} \cdot(3 \mathbf{i}+\mathbf{j}-\mathbf{k})=4$ o.e.	$\begin{aligned} & \text { M1 } \\ & \text { A1ft (2) } \\ & \hline \end{aligned}$
		M1 M1 A1 M1 A1 (5)
	Writing down direction vector of $\overrightarrow{P S}$ from part (c). $\overrightarrow{Q R}=\mathbf{i}-2 \mathbf{j}+\mathbf{k}=\overrightarrow{P S} \quad \therefore P S / / \mathrm{QR} \quad(\text { or cross-product }=0)$	M1 A1 (2)
	$\begin{aligned} & \overrightarrow{P T}=4 \mathbf{i}+2 \mathbf{j} \quad \text { (or } \overrightarrow{Q T}=3 \mathbf{i}+3 \mathbf{j}-2 \mathbf{k} \text { or } \overrightarrow{R T}=2 \mathbf{i}+5 \mathbf{j}-3 \mathbf{k}) \\ & \text { Volume }=\frac{1}{3}\|\overrightarrow{P Q} \times \overrightarrow{P R} \cdot \overrightarrow{P T}\|=\frac{1}{3}\|(3 \mathbf{i}+\mathbf{j}-\mathbf{k}) \cdot(4 \mathbf{i}+2 \mathbf{j})\| \quad \text { ft from (a) } \end{aligned}$ (Instead of $\overrightarrow{P Q} \times \overrightarrow{P R}$, it could be $\overrightarrow{P Q} \times \overrightarrow{Q R}$ or $\overrightarrow{P R} \times \overrightarrow{Q R}$) $\begin{aligned} & =\frac{1}{3}(12+2) \\ & =4 \frac{2}{3} \text { o.e. } \end{aligned}$	M1 A1ft A1 (3) (15)
	(a) If both vectors are 'reversed', B0 M1 A1 is possible (c) Alternative: Direction of line: $\left(\begin{array}{c}1 \\ -2 \\ -5\end{array}\right) \times\left(\begin{array}{c}3 \\ 1 \\ -1\end{array}\right)=7\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)$ M2 A1 Through $P(1,0,-1): \quad \frac{x-1}{1}=\frac{y}{-2}=\frac{z+1}{1}$ M1 A1 (e) Alternative: $\frac{1}{3}\left\|\begin{array}{ccc}4 & 2 & 0 \\ 1 & -1 & 2 \\ 2 & -3 & 3\end{array}\right\|$ gives M1 A1 directly. Here ft from $1^{\text {st }}$ line of part (a). Special case: $\frac{1}{6}$ or $\frac{1}{2}$ instead of $\frac{1}{3}$, but method otherwise correct: M1 A0 A0	

June 2008
 6677 Mechanics M1
 Mark Scheme

Question Number	Scheme	Marks
1.	(a) $\begin{aligned} & I=m v \Rightarrow 3=0.4 \times v \\ & v=7.5\left(\mathrm{~ms}^{-1}\right) \end{aligned}$ (b) LM $\begin{aligned} 0.4 \times 7.5 & =0.4 v+0.6 \times 5 \\ 0 & =0.4 v \quad \Rightarrow \quad v=0 \end{aligned}$	M1 A1 A1 (3) M1 A1 A1 (3) [6]
2.	(a) $v^{2}=u^{2}+2 a s \Rightarrow 17.5^{2}=u^{2}+2 \times 9.8 \times 10$ Leading to $u=10.5$ (b) $\begin{gather*} v=u+a t \Rightarrow \quad 17.5=-10.5+9.8 T \\ T=2 \frac{6}{7} \quad \text { (s) } \tag{s} \end{gather*}$ Alternatives for (b) $\begin{aligned} s=\left(\frac{u+v}{2}\right) T \Rightarrow 10 & =\left(\frac{17.5+-10.5}{2}\right) T \\ \frac{20}{7} & =T \end{aligned}$ OR $\quad s=u t+\frac{1}{2} a t^{2} \Rightarrow-10=10.5 t-4.9 t^{2}$ Leading to $T=2 \frac{6}{7},\left(-\frac{5}{7}\right)$ Rejecting negative (b) can be done independently of (a) $s=v t-\frac{1}{2} a t^{2} \Rightarrow-10=-17.5 t+4.9 t^{2}$ Leading to $T=2 \frac{6}{7}, \frac{5}{7}$ For final A1, second solution has to be rejected. $\frac{5}{7}$ leads to a negative u.	M1 A1 A1 (3) M1 A1 f.t. DM1 A1 (4) [7] M1A1 f.t. DM1A1 (4) M1 A1 f.t. DM1 A1 (4) M1 A1 DM1 A1 (4)

Question Number	Scheme	Marks
3.	(a) $\begin{aligned} \tan \theta & =\frac{8}{6} \\ \theta & \approx 53^{\circ} \end{aligned}$ (b) $\begin{aligned} \mathbf{F} & =0.4(6 \mathbf{i}+8 \mathbf{j})(=2.4 \mathbf{i}+3.2 \mathbf{j}) \\ \|\mathbf{F}\| & =\sqrt{ }\left(2.4^{2}+3.2^{2}\right)=4 \end{aligned}$ The method marks can be gained in either order. (c) $\begin{aligned} \mathbf{v} & =9 \mathbf{i}-10 \mathbf{j}+5(6 \mathbf{i}+8 \mathbf{j}) \\ & =39 \mathbf{i}+30 \mathbf{j}\left(\mathrm{~ms}^{-1}\right) \end{aligned}$	M1 A1 (2) M1 M1 A1 (3) M1 A1 A1 (3) $[8]$
4.	(a) (b) $\begin{align*} 30 \times 25+\underline{\frac{1}{2}(25+10) t}+10(60-t) & =1410 \\ 7.5 t & =60 \\ t & =8(\mathrm{~s}) \\ a & =\frac{25-10}{8}=1.875\left(\mathrm{~ms}^{-2}\right) \quad 1 \frac{7}{8} \tag{7} \end{align*}$	(2) M1 A1 A1 DM1 A1 M1 A1 [9]

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& \& Scheme \& \& Marks \\
\hline 7. \& (a)

(b) \& \begin{tabular}{l}
Use of $F=\mu R$
$$
F+4 g \sin 30=45 \cos 50^{\circ}
$$

Leading to $\mu \approx 0.14$

 \&

accept 68.4

accept 0.136

 \&

M1 A2 $(1,0)$

DM1 A1 (5)

M1

M1 A2 $(1,0)$

DM1 A1 (6)

[11]
\end{tabular}

\hline
\end{tabular}

Question Number	Scheme	Marks
8.	(a) $\begin{aligned} s=u t+\frac{1}{2} a t^{2} \Rightarrow \quad 6 & =\frac{1}{2} a \times 9 \\ a & =1 \frac{1}{3}\left(\mathrm{~ms}^{-2}\right) \end{aligned}$	
	(b) N2L for system $\begin{aligned} 30-\mu 5 g & =5 a \\ \mu & =\frac{14}{3 g}=\frac{10}{21} \end{aligned}$ ft their a, accept symbol or \quad awrt 0.48	$\begin{aligned} & \text { M1 A1ft } \\ & \text { DM1 A1 (4) } \end{aligned}$
	(c) N2L for $P \quad T-\mu 2 g=2 a \quad \mathrm{ft}$ their μ, their a, accept symbols $T-\frac{14}{3 g} \times 2 g=2 \times \frac{4}{3}$ Leading to $T=12(\mathrm{~N})$ awrt 12	M1 A1 ft DM1 A1 (4)
	$\begin{array}{ll} \text { Alternatively } & \text { N2L for } Q \\ & 30-T-\mu 3 g=3 a \\ & \text { Leading to } T=12(\mathrm{~N}) \end{array}$	$\begin{gathered} \text { M1 A1 } \\ \text { DM1 A1 } \end{gathered}$
	(d) The acceleration of P and Q (or the whole of the system) is the same.	B1 (1)
	(e) $v=u+a t \Rightarrow v=\frac{4}{3} \times 3=4$	B1 ft on a
	N2L (for system or either particle) $\begin{gathered} -5 \mu g=5 a \\ a=-\mu g \\ v=u+a t \Rightarrow \quad 0=4-\mu g t \end{gathered}$ or equivalent	$\begin{gathered} \text { M1 } \\ \text { DM1 } \end{gathered}$
	Leading to $t=\frac{6}{7}(\mathrm{~s})$ accept $0.86,0.857$	A1
		[15]

June 2008
6678 Mechanics M2
Mark Scheme

Question Number	Scheme	Marks
1.	Resolve $\begin{aligned} & \mathrm{e} \boldsymbol{\pi}: T_{r}+\frac{2000 g \times \sin \alpha}{\left(T_{r}=816\right)}=1600 \\ & P= \\ & 816 \times 14(\mathrm{~W}) \quad \text { ft their } T_{r} \\ & \\ & \\ & \approx 11(\mathrm{~kW}) \quad \text { accept } 11.4 \end{aligned}$	M1 A1 A1 M1 A1ft A1 cso (6) [6]
2.	(a) Eliminating x to obtain equation in e Leading to $\quad e=\frac{3}{4}$ (b) $\quad x=3 e u$ or $\frac{9}{4} u$ or $4.5 \mathrm{u}-3 \mathrm{eu} \quad$ seen or implied in (b) Loss in $\mathrm{KE}=\frac{1}{2} 4 m(3 u)^{2}+\frac{1}{2} 3 m(2 u)^{2}-\frac{1}{2} 4 m\left(\frac{9}{4} u\right)^{2}-\frac{1}{2} 3 m(3 u)^{2}$ ft their x $=24 m u^{2}-23 \frac{5}{8} m u^{2}=\frac{3}{8} m u^{2}=0.375 m u^{2}$	B1 M1 A1 DM1 A1 (5) B1 M1 A1ft A1 (4) [9]

Question Number	Scheme	Marks
3.	(a $\Delta \mathrm{KE}=\frac{1}{2} \times 3.5\left(12^{2}-8^{2}\right)(=140)$ or KE at A, B correct separately $\Delta \mathrm{PE}=3.5 \times 9.8 \times 14 \sin 20^{\circ}(\approx 164.238)$ or PE at A, B correct separately $\Delta \mathrm{E}=\Delta \mathrm{KE}+\Delta \mathrm{PE} \approx 304,300$ (b) Using Work-Energy $\begin{aligned} & F_{r}=\mu \times 3.5 \mathrm{~g} \cos 20^{\circ} \\ & 304.238 \ldots=F_{r} \times 14 \\ & 304.238 \ldots=\mu 3.5 \mathrm{~g} \cos 20^{\circ} \times 14 \\ & \mu \approx 0.674,0.67 \end{aligned} \quad \text { ft their (a), } F_{r}$ Alternative using N2L $\begin{aligned} & F_{r}=\mu \times 3.5 g \cos 20^{\circ} \\ & v^{2}=u^{2}+2 a s \Rightarrow 8^{2}=12^{2}-2 a \times 14 \\ & \left(a=\frac{20}{7}\right)(2.857 \ldots) \end{aligned}$ N2L R $\mathbb{R}:\left\{\right.$ their $\left.F_{r}\right\}-m g \sin 20^{\circ}=m a$ ft their F_{r}. Leading to $\mu \approx 0.674$ or 0.67	B1 M1 A1 DM1 A1 (5) M1 A1 M1 A1 ft A1 (5) [10] M1 A1 M1 A1ft A1 (5)
4.	(a) $\begin{aligned} \mathrm{N} 2 \mathrm{~L} \quad & (6 t-5) \mathbf{i}+\left(t^{2}-2 t\right) \mathbf{j}=0.5 \mathbf{a} \\ \mathbf{a} & =(12 t-10) \mathbf{i}+\left(2 t^{2}-4 t\right) \mathbf{j} \\ \mathbf{v} & =\left(6 t^{2}-10 t\right) \mathbf{i}+\left(\frac{2}{3} t^{3}-2 t^{2}\right) \mathbf{j} \quad(+\mathbf{C}) \quad \mathrm{ft} \text { their } \mathbf{a} \\ \mathbf{v} & =\left(6 t^{2}-10 t+1\right) \mathbf{i}+\left(\frac{2}{3} t^{3}-2 t^{2}-4\right) \mathbf{j} \end{aligned}$ (b) When $t=3$, $\begin{array}{rlr} \mathbf{v}_{3} & =25 \mathbf{i}-4 \mathbf{j} \\ -5 \mathbf{i}+12 \mathbf{j} & =0.5(\mathbf{v}-(25 \mathbf{i}-4 \mathbf{j})) \\ \mathbf{v} & =15 \mathbf{i}+20 \mathbf{j} & \text { ft their } \mathbf{v}_{3} \\ \|\mathbf{v}\|=\sqrt{ }\left(15^{2}+20^{2}\right)=25 \quad\left(\mathrm{~ms}^{-1}\right) & \end{array}$	M1 A1 M1 A1ft+A1ft A1 (6) M1 M1 A1ft A1 M1 A1 (6) [12]

Question Number	Scheme	Marks
5.	(a)	
	$R(\uparrow) \quad R+P \cos \alpha=W$	M1 A1
	$\begin{gathered} M(A) \quad P \times 2 a=W \times 1.5 a \cos \alpha \\ \left(P=\frac{3}{4} W \cos \alpha\right) \end{gathered}$	M1 A1
	$R=W-P \cos \alpha=W-\frac{3}{4} W \cos ^{2} \alpha$	DM1
	$=\frac{1}{4}\left(4-3 \cos ^{2} \alpha\right) W$	A1 (6)
	(b) Using $\cos \alpha=\frac{2}{3}, \quad R=\frac{2}{3} W$	B1
	$R(\rightarrow) \quad \mu R=P \sin \alpha$	M1 A1
	Leading to $\mu=\frac{3}{4} \sin \alpha$ $\left(\sin \alpha=\sqrt{ }\left(1-\frac{4}{9}\right)=\frac{\sqrt{5}}{3}\right)$	
	$\mu=\frac{\sqrt{ } 5}{4}$	DM1 A1 (5)
		[11]

Question Number			Scheme		Marks
6.	(a) (b) (c)	$\begin{aligned} & M(O y) \\ & M(O y) \\ & M(O x) \end{aligned}$	$\begin{aligned} & (8+k) m \times 6.4=5 m \times 8+k m \times 8 \\ & 1.6 k=11.2 \Rightarrow k=7 \quad * \\ & 27 m \bar{x}=12 m \times 4+5 m \times 8+7 m \times 8 \\ & \bar{x}=\frac{16}{3} \\ & 27 m \bar{y}=12 m \times 2.5+8 m \times 5 \\ & \bar{y}=\frac{70}{27} \\ & \tan \theta=\frac{\bar{y}}{\bar{x}}=\frac{35}{72} \\ & \theta \approx 26^{\circ} \end{aligned}$	cso 5.3 or better 2.6 or better awrt 25.9°	M1 A1 DM1 A1 (4) M1 A1 A1 M1 A1 A1 (6) M1 A1ft A1 (3) [13]

June 2008
6679 Mechanics M3
Mark Scheme

Question Number	Scheme	Marks
Q2 (a)		M1A1 M1 A1 (4)
(b)	Time from $O \rightarrow A \rightarrow O=1.5 \mathrm{~s}$ $\therefore t=0.5$ $x=a \sin \omega t \quad \Rightarrow O P=0.12 \sin \left(\frac{\pi}{3}\right)$ Distance from B is $0.12-O P=0.12-0.104 \ldots=0.016 \mathrm{~m}$	B1 M1A1 M1A1 (5)
(c)	$\begin{aligned} & v^{2}=\omega^{2}\left(a^{2}-x^{2}\right) \\ & v=\frac{2 \pi}{3} \quad \sqrt{\left.0.12^{2}-0.104 \ldots\right)^{2}}=\frac{2 \pi}{3} \times 0.0598=0.13 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1 (2) 11 Marks

Question Number	Scheme	Marks
Q6 (a)	$\begin{gathered} F=m a(\rightarrow) \frac{3}{(x+1)^{3}}=0.5 \mathrm{a}=0.5 v \frac{\mathrm{~d} v}{\mathrm{~d} x} \\ \int \frac{3}{(x+1)^{3}} \mathrm{~d} x=0.5 \int v \mathrm{~d} v \\ -\frac{3}{2(x+1)^{2}}=\frac{1}{4} v^{2}(+c) \end{gathered}$ Separate and S	M1A1 M1 A1
	$x=0, v=0 \Rightarrow c^{\prime}=-\frac{3}{2} \quad \therefore \quad v^{2}=6\left(1-\frac{1}{(x+1)^{2}}\right) *$ $\forall x \quad v^{2}<6 \quad \therefore \quad v<\sqrt{6} \quad\left(\because(x+1)^{2}\right.$ always $\left.>0\right)$	M1A1 cso (6) B1 (1)
(c)	$\begin{aligned} & v=\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\sqrt{6} \sqrt{(x+1)^{2}-1}}{x+1} \\ & \int \frac{x+1}{\sqrt{(x+1)^{2}-1}} \mathrm{~d} x=\sqrt{6} \int \mathrm{~d} t \\ & \sqrt{(x+1)^{2}-1}=\sqrt{6} t+c^{\prime} \\ & t=0, x=0 \Rightarrow c^{\prime}=0 \\ & t=2 \Rightarrow(x+1)^{2}-1=(2 \sqrt{6})^{2} \\ & (x+1)^{2}=25 \quad \Rightarrow x=4 \quad\left(c^{\prime}\right. \text { need not have been found) } \end{aligned}$	M1 M1
		M1 A1
		M1 M1
		A1 cao (7)

June 2008
 6680 Mechanics M4 Mark Scheme

7.(a)	$\text { PE of rod }=-k M g a \sin 2 \theta$ $B P=2 \times 2 a \sin \theta=4 a \sin \theta$ PE of mass $=-M g(6 a-4 a \sin \theta)$ $\begin{aligned} V & =-M g(6 a-4 a \sin \theta)-k M g a \sin 2 \theta \\ & =M g a(4 \sin \theta-k \sin 2 \theta)+\mathrm{constant} \end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & \text { (5) } \end{array}$
(b)	$\begin{array}{r} \frac{\mathrm{d} V}{\mathrm{~d} \theta}=M g a(4 \cos \theta-2 k \cos 2 \theta) \\ \text { so, } 4 \times \frac{3}{4}-2 k\left(2\left(\frac{3}{4}\right)^{2}-1\right)=0 \\ \Rightarrow k=12 \tag{5} \end{array}$	$\begin{aligned} & \text { M1 A1 } \\ & \text { M1 M1 } \\ & \text { A1 } \end{aligned}$
(c)	$\begin{aligned} 4 \cos \theta-24\left(2 \cos ^{2} \theta-1\right) & =0 \\ 12 \cos ^{2} \theta-\cos \theta-6 & =0 \\ (4 \cos \theta-3)(3 \cos \theta+2) & =0 \\ \cos \theta & =-\frac{2}{3} \end{aligned}$	M1 D M1 A1 (3)
(d)	$\frac{d^{2} V}{d \theta^{2}}=(M g a)(-4 \sin \theta+4 k \sin 2 \theta)$ when $\cos \theta=\frac{3}{4}, \frac{d^{2} V}{d \theta^{2}}=(M g a) \times 44.97 . . \Rightarrow$ stable when $\cos \theta=\frac{-2}{3}, \frac{d^{2} V}{d \theta^{2}}=(M g a) \times-50.68 . . \Rightarrow$ unstable	M1 A1 M1 A1 A1 (5)

Question Number	Scheme	Marks
1.	$\begin{aligned} & \mathbf{d}=(7 \mathbf{i}-14 \mathbf{j})-(\mathbf{i}-6 \mathbf{j})=(6 \mathbf{i}-8 \mathbf{j}) \\ & \begin{aligned} &(6 k \mathbf{i}+k \mathbf{j}) .(6 \mathbf{i}-8 \mathbf{j})=\frac{1}{2} \times \frac{1}{2} \times(2 \sqrt{7})^{2} \\ & 28 k=7 \Rightarrow k=\frac{1}{4} \\ & \Rightarrow \mathbf{P}=\frac{\mathbf{3}}{\mathbf{2}} \mathbf{i}+\frac{1}{4} \mathbf{j} \end{aligned} \end{aligned}$	B1 M1 A2 ft D M1 A1 6
2.	Aux Equn: $m^{2}+4 m=0 \Rightarrow m=0$ or -4 $\begin{aligned} & \mathbf{r}=\mathbf{A}+\mathbf{B e}^{-4 t} \\ & t=0, \mathbf{r}=\mathbf{i}-\mathbf{j}: \quad \mathbf{A}+\mathbf{B}=\mathbf{i}-\mathbf{j} \\ & \mathbf{v}=-\mathbf{4} \mathbf{B e}^{-4 t} \\ & t=0, v=-8 \mathbf{i}+4 \mathbf{j}: \quad-\mathbf{4 B}=-8 \mathbf{i}+4 \mathbf{j} \\ & \mathbf{B}=2 \mathbf{i}-\mathbf{j} \Rightarrow \mathbf{A}=-\mathbf{i} \\ & \text { so, } \mathbf{r}=-\mathbf{i}+(2 \mathbf{i}-\mathbf{j}) \mathrm{e}^{-4 t} \\ & \quad=\left(2 \mathrm{e}^{-4 t}-1\right) \mathbf{i}-\mathrm{e}^{-4 t} \mathbf{j} \end{aligned}$	M1 A1 M1 M1 A1 A1 A1 7
3.(a)	$\begin{aligned} \mathbf{R} & =(-2 \mathbf{i}+\mathbf{j}-\mathbf{k})+(3 \mathbf{i}-\mathbf{j}+2 \mathbf{k}) \\ & =(\mathbf{i}+\mathbf{k}) \end{aligned}$	M1 A1 (2)
(b)	$\begin{aligned} & \mathbf{G}+(5 \mathbf{i}+\mathbf{j}-\mathbf{k}) \times(\mathbf{i}+\mathbf{k})=(\mathbf{i}-\mathbf{j}+\mathbf{k}) \times(-2 \mathbf{i}+\mathbf{j}-\mathbf{k})+(4 \mathbf{i}-\mathbf{j}-2 \mathbf{k}) \times(3 \mathbf{i}-\mathbf{j}+2 \mathbf{k}) \\ & \mathbf{G}+(\mathbf{i}-6 \mathbf{j}-\mathbf{k})=(-\mathbf{j}-\mathbf{k})+(-4 \mathbf{i}-14 \mathbf{j}-\mathbf{k}) \\ & \mathbf{G}=(-5 \mathbf{i}-9 \mathbf{j}-\mathbf{k}) \\ &\|\mathbf{G}\|=\sqrt{\left(-5^{2}+(-9)^{2}+(-1)^{2}\right.}=\sqrt{107} \mathrm{Nm} \end{aligned}$	M1 A2 ft A 3 ft A1 M1 A1 (9)

4. (a)	$\begin{align*} & -m g \delta t=(m+\delta m)(v+\delta v)+\delta m(U-v)-m v \\ & -m g \delta t=m v+m \delta v+v \delta m+U \delta m-v \delta m-m v \\ & -m g=m \frac{\mathrm{~d} v}{\mathrm{~d} t}+U \frac{\mathrm{~d} m}{\mathrm{~d} t} \\ & m=M_{0}\left(1-\frac{1}{2} t\right) \Rightarrow \frac{\mathrm{d} m}{\mathrm{~d} t}=-\frac{1}{2} M_{0} \\ & -M_{0} g\left(1-\frac{1}{2} t\right)=M_{0}\left(1-\frac{1}{2} t\right) \frac{\mathrm{d} v}{\mathrm{~d} t}-\frac{1}{2} M_{0} U \\ & U-g(2-t)=(2-t) \frac{\mathrm{d} v}{\mathrm{~d} t} \\ & \frac{U}{(2-t)}-9.8=\frac{\mathrm{d} v}{\mathrm{~d} t} \tag{7} \end{align*}$	M1 A2 A1 B1 M1 A1
(b)	$\begin{aligned} \frac{\mathrm{d} v}{\mathrm{~d} t}>0 \text { when } t=0 \Rightarrow & \frac{U}{2}-9.8>0 \\ & \Rightarrow U>19.6^{*} \end{aligned}$	M1 A1 (2)
(c)	$\begin{aligned} & \begin{aligned} & \begin{aligned} v=\int \frac{U}{(2-t)} & -9.8 \mathrm{~d} t \\ & =-U \ln (2-t)-9.8 t+C \end{aligned} \\ & t=0, v=0: 0=-U \ln 2+C \Rightarrow C=U \ln 2 \end{aligned} \\ & \text { so, } v=U \ln \frac{2}{(2-t)}-9.8 t \end{aligned}$ $t=1: v=U \ln 2-9.8$	M1 A1 M1
		14

Question Number	Scheme	Marks
5.(a)	$\begin{align*} I & =\frac{1}{3} m(9 a)^{2}+\frac{1}{2} 2 m a^{2}+2 m(9 a)^{2} \\ & =27 m a^{2}+m a^{2}+162 m a^{2} \\ & =190 m a^{2} \tag{4} \end{align*}$	M1 A1 A1 $\mathrm{A} 1^{*}$
(b)	$\begin{aligned} & \mathrm{M}(L), \\ & m g \frac{9 a}{2} \sin \theta+m g 9 a \sin \theta=-190 m a^{2} \ddot{\theta} \\ & \ddot{\theta}=-\frac{9 g}{76 a} \sin \theta \end{aligned}$ For small $\theta, \sin \theta \approx \theta$, $\begin{aligned} & \Rightarrow \ddot{\theta}=-\frac{9 g}{76 a} \theta \text { so S.H.M. } \\ & \text { Period }=2 \pi \sqrt{\frac{76 a}{9 g}}=\frac{4 \pi}{3} \sqrt{\frac{19 a}{g}} \end{aligned}$	M1 A2 M1 A1 DM1 A1 (7)
6.	$\begin{aligned} \delta m & =\pi a^{2} \delta x \cdot \frac{M}{\pi a^{2} h}=\frac{M \delta x}{h} \\ \delta I & =\frac{1}{4} \delta m \cdot a^{2}+\delta m \cdot x^{2} \\ & =\frac{M}{4 h}\left(a^{2}+4 x^{2}\right) \delta x \\ I & =\int_{0}^{h} \frac{M}{4 h}\left(a^{2}+4 x^{2}\right) \mathrm{d} x \\ & =\frac{M}{4 h}\left[a^{2} x+\frac{4}{3} x^{3}\right]_{0}^{h} \\ & =\frac{M}{4}\left(a^{2}+\frac{4}{3} h^{2}\right) \\ & =\frac{M}{12}\left(3 a^{2}+4 h^{2}\right) \end{aligned}$	M1 A1 M1 A1 M1 A1 M1 A1 M1 A1

June 2008
 6683 Statistics S1
 Mark Scheme

Question Number	Scheme	Marks
Q1 (a)		M1 A1 A1
(b)	$\begin{aligned} \mathrm{P}(\text { Positive Test }) & =0.02 \times 0.95+0.98 \times 0.03 \\ & =0.0484 \end{aligned}$	M1A1ft A1
(c)	$\begin{aligned} \mathrm{P}(\text { Do not have disease } \mid \text { Postive test }) & =\frac{0.98 \times 0.03}{0.0484} \\ & =0.607438 . . \end{aligned}$	M1 A1
(d)	Test not very useful OR High probability of not having the disease for a person with a positive test	B1 [1] Total 9
	Notes: (a) M1:All 6 branches. Bracketed probabilities not required. (b) M1 for sum of two products, at least one correct from their diagram A1ft follows from the probabilities on their tree A1 for correct answer only or $\frac{121}{2500}$ (c) M1 for conditional probability with numerator following from their tree and denominator their answer to part (b). A1 also for $\frac{147}{242}$.	

Question Number	Scheme	Marks
Q3 (a) (b) (c)	$\begin{array}{cl} -1 \times p+1 \times 0.2+2 \times 0.15+3 \times 0.15 & =0.55 \\ p+q+0.2+0.15+0.15 & =0.4 \\ & =1 \\ & q=0.1 \end{array}$ $\begin{aligned} \operatorname{Var}(X) & =(-1)^{2} \times p+1^{2} \times 0.2+2^{2} \times 0.15+3^{2} \times 0.15,-0.55^{2} \\ & =2.55-0.3025=2.2475 \\ \mathrm{E}(2 X-4) & =2 \mathrm{E}(X)-4 \\ & =-2.9 \end{aligned}$ $\text { awrt } 2.25$	M1dM1 A1 M1 A1 M1A1,M1 A1 A1 M1 A1 Total 11
	Notes: (a) M1 for at least 2 correct terms on LHS Division by constant e.g. 5 then M0 dM1 dependent on first M1 for equate to 0.55 and attempt to solve. Award M1M1A1 for $p=0.4$ with no working M 1 for adding probabilities and equating to 1 . All terms or equivalent required e.g. $p+q=0.5$ Award M1A1 for $q=0.1$ with no working (b) M1 attempting $\mathrm{E}\left(X^{2}\right)$ with at least 2 correct terms A1 for fully correct expression or 2.55 Division by constant at any point e.g. 5 then M0 M1 for subtracting their mean squared A1 for awrt 2.25 Award awrt 2.25 only with no working then 4 marks (c) M1 for $2 x$ (their mean) -4 Award 2 marks for -2.9 with no working	

Question Number	Scheme	Marks
Q5 (a)	3 closed intersecting curves with labels 100 100,30 $12,10,3,25$ Box	M1 A1 A1 B1 [4]
(b)	$\mathrm{P}($ Substance $C)=\frac{100+100+10+25}{300}=\frac{235}{300}=\frac{47}{60}$ or exact equivalent	M1A1ft [2]
(c) (d)	$\mathrm{P}($ All $3 \mid A)=\frac{10}{30+3+10+100}=\frac{10}{143}$ or exact equivalent $P($ Universal donor $)=\frac{20}{300}=\frac{1}{15}$ or exact equivalent	M1A1ft [2] M1A1 cao [2] Total 10
	Notes: (a) 20 not required. Fractions and exact equivalent decimals or percentages. (b) M1 For adding their positive values in C and finding a probability A1ft for correct answer or answer from their working (c) M1 their 10 divided by their sum of values in A Alft for correct answer or answer from their working (d) M1 for 'their 20' divided by 300 A1 correct answer only	

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks \\
\hline \begin{tabular}{l}
Q7 \\
(a)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
z \& =\frac{53-50}{2} \\
\mathrm{P}(X>53) \& =1-\mathrm{P}(Z<1.5) \\
\& =1-0.9332 \\
\& =0.0668
\end{aligned}
\] \\
Attempt to standardise \\
1-probability required can be implied
\end{tabular} \& \begin{tabular}{l}
M1 \\
B1 \\
A1 \\
[3]
\end{tabular} \\
\hline (b)

(c) \& $$
\begin{aligned}
& \mathrm{P}\left(X \leq x_{0}\right)=0.01 \\
& \frac{x_{0}-50}{2}=-2.3263 \\
& x_{0}=45.3474 \\
& \begin{array}{rr}
\mathrm{P}(2 \text { weigh more than } 53 \mathrm{~kg} \text { and } 1 \text { less })=3 \times 0.0668^{2}(1-0.0668) & \\
& =0.012492487 . .
\end{array} \\
& \\
&
\end{aligned}
$$ \& M1

M1B1
M1A1
B1M1A1ft
A1
Total 12

\hline \& | Notes: |
| :--- |
| (a) M1 for using 53,50 and 2, either way around on numerator |
| B1 1- any probability for mark |
| A1 0.0668 cao |
| (b) M1 can be implied or seen in a diagram |
| or equivalent with correct use of 0.01 or 0.99 |
| M1 for attempt to standardise with 50 and 2 numerator either way around |
| B1 for ± 2.3263 |
| M1 Equate expression with 50 and 2 to a z value to form an equation with consistent signs and attempt to solve |
| A1 awrt 45.3 or 45.4 |
| (c) B1 for 3, |
| M1 $p^{2}(1-p)$ for any value of p |
| A1 ft for p is their answer to part (a) without 3 |
| A1 awrt 0.012 or 0.0125 | \&

\hline
\end{tabular}

June 2008
6684 Statistics S2
Mark Scheme

Notes

(a) B1 cao

M1 using the correct formula $\frac{(a-b)^{2}}{12}$ and subst in 10 or 0
or for an attempt at the integration they must increase the power of x by 1 and subtract their $\mathrm{E}(X)$ squared.
A1 cao
(b) M1 for $\mathrm{P}(X \leq 2)$ or $\mathrm{P}(X<2)$

A1 cao
(c) M1 (their b) ${ }^{5}$. If the answer is incorrect we must see this. No need to check with your calculator

Al cao
(d) writing $\mathrm{P}(X \geq 8)$ (may use $>$ sign). If they do not write $\mathrm{P}(X \geq 8)$ then it must be clear from their working that they are finding it. 0.2 on its own with no working gets M0

M1 For attempting to use a correct conditional probability.
NB this is an A mark on EPEN
A1 $2 / 5$
Full marks for $2 / 5$ on its own with no incorrect working
Alternative
M1 for $\mathrm{P}(X \geq 3)$ or $\mathrm{P}(X \geq 8)$ may use $>\operatorname{sign}$
M1 using either $\mathrm{U}[0,5]$ or $\mathrm{U}[5,10]$
A1 2/5

Question Number	Scheme	Marks
2		B1 B1 B1 M1 M1 A1 A1 (7) B1 B1 B1 M1 M1 A1 A1 (Total 7)

Notes

The first 3 marks may be given if the following figures are seen in the standardisation formula :- 58 or 42, 24.36 or $\sqrt{ } 24.36$ or $\sqrt{ } 24.4$ or awrt 4.94 .

Otherwise
B1 normal
B1 58 or 42
B1 24.36
M1 using 50.5 or 51.5 or 49.5 or 48.5 . ignore the direction of the inequality.
M1 standardising $50.5,51,51.5,48.5,49,49.5$ and their μ and σ. They may use $\sqrt{ } 24$ or $\sqrt{ } 24.36$ or $\sqrt{ } 24.4$ or awrt 4.94 for σ or the $\sqrt{ }$ of their variance.
A1 \pm 1.52. may be awarded for $\pm\left(\frac{50.5-58}{\sqrt{24.36}}\right)$ or $\pm\left(\frac{49.5-42}{\sqrt{24.36}}\right)$ o.e.
A1 awrt 0.936

Question Number	Scheme	Marks
4(a)	$X \sim \mathrm{~B}(11000,0.0005)$	M1 A1 (2)
(b)	$\mathrm{E}(X)=11000 \times 0.0005=5.5$	B1
	$\begin{aligned} \operatorname{Var}(X) & =11000 \times 0.0005 \times(1-0.0005) \\ & =5.49725 \end{aligned}$	B1 (2)
(c)	$\mathrm{X} \sim \mathrm{Po}(5.5)$	M1 A1
	$\mathrm{P}(X \leq 2)=0.0884$	dM1 A1 (4)
		Total 8
	Notes	
	(a) M1 for Binomial, A1 fully correct These cannot be awarded unless seen in part a (b)B1 cao B1 also allow 5.50, 5.497, 5.4973, do not allow 5.5	
	(c) M1 for Poisson A1 for using Po (5.5) M1 this is dependent on the previous M mark. It is for attempting to find $\mathrm{P}(X \leq 2)$ A1 awrt 0.0884 Correct answer with no working gets full marks Special case If they use normal approximation they could get M0 A0 M1 A0 if they use 2.5 in their standardisation. NB exact binomial is 0.0883	

Notes

(a) B1 for Binomial B1 for 15 and 0.5 must be in part a This need not be in the form written
(b) M1 attempt to find $\mathrm{P}(X=8)$ any method. Any value of p A1 awrt 0.196
Answer only full marks
(c) M1 for $1-\mathrm{P}(X \leq 3)$.

A1 awrt 0.982
(d) B1 for correct H_{0}. must use p or π

B1 for correct H_{1} must be one tail must use p or π
M1 attempt to find $\mathrm{P}(X \geq 13)$ correctly. E.g. $1-\mathrm{P}(X \leq 12)$
A1 correct probability or CR

To get the next 2 marks the null hypothesis must state or imply that $(p)=0.5$
M1 for correct statement based on their probability or critical region or a correct contextualised statement that implies that. not just 13 is in the critical region.

A1 This depends on their M1 being awarded for rejecting H_{0}. Conclusion in context. Must use the words biased in favour of heads or biased against tails or sues belief is correct .
NB this is a B mark on EPEN.

They may also attempt to find $\mathrm{P}(X<13)=0.9963$ and compare with 0.99

Question Number	Scheme	Marks
6(a)	Calls occur singly any two of the 3 only need calls once Calls occur at a constant rate Calls occur independently or randomly.	B1 B1 (2)
(b) (i)	$\mathrm{X} \sim \operatorname{Po}(4.5) \quad$ used or seen in (i) or (ii) $\begin{aligned} \mathrm{P}(\mathrm{X}=5) & =\mathrm{P}(\mathrm{X} \leq 5)-\mathrm{P}(\mathrm{X} \leq 4) \\ & =0.7029-0.5321 \\ & =0.1708 \end{aligned}$	M1 M1 A1 (3)
(ii)	$\begin{aligned} \mathrm{P}(\mathrm{X}>8) & =1-\mathrm{P}(\mathrm{X} \leq 8) \\ & =1-0.9597 \\ & =0.0403 \end{aligned}$	M1 A1 (2)
(c)	Но : $\lambda=9(\lambda=18)$ may use λ or μ H1 : $\lambda>9(\lambda>18)$	B1
	$X \sim \operatorname{Po}(9) \quad \text { may be implied }$	B1
	$\mathrm{P}(\mathrm{X} \geq 14)$ $=1-\mathrm{P}(\mathrm{X} \leq 13)$ $[\mathrm{P}(\mathrm{X} \geq 14)=1-0.9261=0.0739]$ $15)$ att $\mathrm{P}(\mathrm{X} \geq 14)$$\| \mathrm{P}(\mathrm{X} \geq$	M1
	$=0.0739$ $\mathrm{CR} \mathrm{X} \geq 15$ awrt 0.0739	A1
	$0.0739>0.05$ $14 \leq 15$	
	Accept H0. or it is not significant or a correct statement in context from their values There is insufficient evidence to say that the number of calls per hour handled by the agent has increased.	M1 A1 (6)
	Notes (a) B1 B1 They must use calls at least once. Independently and randomly are the same reason. Award the first B1 if they only gain 1 mark. Special case if they don't put in the word calls but write two correct statements award B0B1 (b) correct answers only score full marks (i) M1 Po (4.5) may be implied by them using it in their calculations in (i) or (ii) M 1 for $\mathrm{P}(\mathrm{X}<5)-\mathrm{P}(\mathrm{X}<4)$ or $\frac{\mathrm{e}^{-\lambda} \lambda^{5}}{5!}$	

A1 only awrt 0.171
(ii) M 1 for $1-\mathrm{P}(\mathrm{X} \leq 8)$

A1 only awrt 0.0403
(c) B1 both. Must be one tail test. They may use λ or μ and either 9 or 18 and match H0 and H1

M1 Po (9) may be implied by them using it in their calculations.
M1 attempt to find $\mathrm{P}(\mathrm{X} \geq 14)$ eg $1-\mathrm{P}(\mathrm{X}<13)$ or $1-\mathrm{P}(\mathrm{X}<14)$
A1 correct probability or CR

To get the next2 marks the null hypothesis must state or imply that $(\lambda)=9$ or 18
M1 for a correct statement based on their probability or critical region or a correct contextualised statement that implies that.

A1. This depends on their M1 being awarded for accepting H0. Conclusion in context. Must have calls per hour has not increased. Or the rate of calls has not increased.
Any statement that has the word calls in and implies the rate not increasing e.g. no evidence that the rate of calls handled has increased

Saying the number of calls has not increased gains A0 as it does not imply rate NB this is an A mark on EPEN

They may also attempt to find $\mathrm{P}(\mathrm{X}<14)=0.9261$ and compare with 0.95

Question Number			Marks
7(a)	$\begin{aligned} & \int_{0}^{1} \frac{1}{2} x \mathrm{~d} x=\left[\frac{1}{4} x^{2}\right]_{0}^{1}=\frac{1}{4} \quad \text { oe } \\ & \int_{1}^{2} k x^{3} \mathrm{~d} x\left[\frac{1}{4} k x^{4}\right]_{1}^{2}=4 k-\frac{1}{4} k \quad \text { oe } \end{aligned}$	attempt to integrate both parts both answer correct	M1 A1
	$\begin{aligned} \frac{1}{4}+4 k-\frac{1}{4} k & =1 \\ \frac{15 k}{4} & =\frac{3}{4} \\ k & =\frac{1}{5} \end{aligned}$	adding two answers and putting $=1$	dM1dep on previous M A1 (4)
(b)	$\int_{0}^{1} \frac{1}{2} x^{2} \mathrm{~d} x=\left[\frac{1}{6} x^{3}\right]_{0}^{1}=\frac{1}{6}$	attempt to integrate $x \mathrm{f}(x)$ for one part	M1
	$\begin{aligned} \int_{1}^{2} \frac{1}{5} x^{4} \mathrm{~d} x=\left[\frac{1}{25} x^{5}\right]_{1}^{2} & =\frac{32}{25}-\frac{1}{25} \\ & =\frac{31}{25} \text { or } 1.24 \end{aligned}$	$1 / 6$	A1 A1
(c)	$\begin{aligned} \mathrm{E}(X) & =\frac{1}{6}+\frac{31}{25} \\ & =\frac{211}{150}=1 \frac{61}{150}=1.40 \dot{6} \end{aligned}$		A1 (4)
	$\begin{aligned} \mathrm{F}(x) & =\int_{0}^{x} \frac{1}{2} t \mathrm{dt} \quad(\text { for } 0 \leq x \leq 1) \\ & =\frac{1}{4} x^{2} \end{aligned}$	ignore limits for M must use limit of 0	M1 A1
	$\mathrm{F}(x)=\int_{1}^{x} \frac{1}{5} t^{3} \mathrm{dt} ;+\int_{0}^{1} \frac{1}{2} t \mathrm{dt} \quad(\text { for } 1<x \leq 2)$ 0 and 1	need limit of 1 and variable upper limit; need limit	M1; M1
	$=\frac{1}{20} x^{4}+\frac{1}{5}$		A1

they must add this to their $\int_{1}^{x} \frac{1}{5} t^{3} \mathrm{dt}$. may be given if they add $1 / 4$
(Alternative method for these last two M marks $)$
M1 for att to $\int \frac{1}{5} t^{3} d t$ and putting +C
M1 use of $\mathrm{F}(2)=1$ to find C

A1 $\frac{1}{20} x^{4}+\frac{1}{5} \quad$ must be correct
B1 middle pair followed through from their answers. condone them using $<$ or \leq incorrectly they do not need to match up

B1 end pairs. condone them using $<$ or \leq. They do not need to match up
NB if they show no working and just write down the distribution. If it is correct they get full marks. If it is incorrect then they cannot get marks for any incorrect part. So if $0<x<1$ is correct they can get M1 A1 otherwise M0 A0. if $3<x<4$ is correct they can get M1 A1A1 otherwise M0 A0A0. you cannot award B1ft if they show no working unless the middle parts are correct.
(d) M1 either of their $\frac{1}{4} x^{2}$ or $\frac{1}{20} x^{4}+\frac{1}{5}=0.5$

A1 for their $\mathrm{F}(X) 1<x<2=0.5$
A1 cao
If they add both their parts together and put $=0.5$ they get M0
If they work out both parts separately and do not make the answer clear they can get M1 A1 A0
(e) B1 negative skew only

B1 Dependent on getting the previous B1. their reason must follow through from their figures.

June 2008
6691 Statistics S3
Mark Scheme

\begin{tabular}{|c|c|}
\hline Question number \& Scheme Marks

\hline 1. (a)

(b) \& \begin{tabular}{rlrl}
\bar{x} \& $=\left(\frac{6046}{36}=\right) 167.94 \ldots$ \& awrt 168 \& B1

s^{2} \& $=\frac{1016338-36 \times \bar{x}^{2}}{35}$ \& \& M1

\& $=27.0253 \ldots$. \&	awrt 27.0
(Accept 27)	\& A1

99% Confidence Interval is: \& $\bar{x} \pm 2.5758 \times \frac{5.1}{\sqrt{36}}$ \& awrt \&

\& \& \& M1667,170)
\end{tabular}

\hline (a)

(b) \& | M1 for a correct expression for s^{2}, follow through their mean, beware it is very "sensitive" |
| :--- |
| $167.94 \rightarrow \frac{999.63 . .}{35} \rightarrow 28.56 \ldots$ |
| $167.9 \rightarrow \frac{1483.24 . .}{35} \rightarrow 42.37 \ldots$ |
| These would all score M1A0 |
| $168 \rightarrow \frac{274}{35} \rightarrow 7.82$ |
| Use of 36 as the divisor ($=26.3 \ldots$) is M0A0 |
| M1 for substituting their values in $\bar{x} \pm z \times \frac{5.1 \text { or } s}{\sqrt{36}}$ where z is a recognizable value from tables $1^{\text {st }} \mathrm{A} 1$ follow through their mean and their z (to 2 dp) in $\bar{x} \pm z \times \frac{5.1}{\sqrt{36}}$ |
| Beware: $167.94 \pm 2.5758 \times \frac{5.1^{2}}{36} \rightarrow(166.07 . ., 169.8$.. $)$ but scoresB1M0A0A0A0 |
| Correct answer only in (b) scores $0 / 5$ |
| $2^{\text {nd }} \& 3^{\text {rd }} \mathrm{A}$ marks depend upon 2.5758 and M mark. |

\hline
\end{tabular}

Question	Scheme \quad Marks
2.	
ALT	$\sum \frac{O^{2}}{E}-N=\frac{30^{2}}{37.1}+\frac{40^{2}}{32.9}+\ldots+\frac{42^{2}}{36.2}-217 \quad$ M1A1ft
	$1^{\text {st }} \mathrm{M} 1$ for some use of the $\frac{\text { row total } \times \text { col total }}{\text { grand total }}$ formula $1^{\text {st }}$ A1 for one correct row or one correct column of expected frequencies to nearest integer $2^{\text {nd }} \mathrm{A} 1$ for all expected frequencies correct to awrt 1 dp (Allow exact fractions) $1^{\text {st }} \mathrm{B} 1$ for hypotheses. Independence is OK. Must mention courses and gender at least once. Use of ρ or "correlation" is B0 but allow ISW. $2^{\text {nd }}$ M1 for an attempt to calculate test statistic. At least one correct expression, ft expected freq. $3^{\text {rd }}$ A1 follow through expected frequencies for at least 3 expressions $3^{\text {rd }}$ M1 for a correct statement relating their test statistic and their cv (may be implied by comment) $5^{\text {th }}$ A1 for a contextualised comment relating their test statistic and their cv. Ignore their H_{0} or H_{1} or assume that they were correct. Must mention courses and gender

\begin{tabular}{|c|c|}
\hline Question number \& Scheme ${ }^{\text {a }}$ Marks

\hline 4. (a)

(b) \& \begin{tabular}{l}
$$
\begin{align*}
X=M_{1} & +M_{2}+M_{3}+M_{4} \sim \mathrm{~N}\left(336,22^{2}\right) \\
\mathrm{P}(X<350) & =\mathrm{P}\left(Z<\frac{350-336}{22}\right) \\
& =\mathrm{P}(Z<0.64) \\
& = \tag{5}
\end{align*}
$$

$M \sim \mathrm{~N}(84,121)$ and $W \sim \mathrm{~N}(62,100) \quad$ Let $Y=M-1.5 W$
$$
\operatorname{Var}(Y)=\operatorname{Var}(M)+1.5^{2} \operatorname{Var}(W)
$$
$$
=11^{2}+1.5^{2} \times 10^{2}=346
$$

$\mu=\mathbf{3 3 6}$	B1
$\sigma^{2}=22^{2}$ or $\mathbf{4 8 4}$	B1
awrt $\mathbf{0 . 6 4}$	
awrt $\mathbf{0 . 7 3 8}$ or $\mathbf{0 . 7 3 9}$	M1
M1	A1
A1	
awrt $\mathbf{0 . 6 8 4} \sim \mathbf{0 . 6 8 6}$	M1
A1	
M1, A1	
$\mathbf{1 1}$ marks	

$$
\mathrm{E}(Y)=84-1.5 \times 62=-9
$$

$$
\mathrm{P}(Y<0), \quad=\mathrm{P}(Z<0.48 \ldots)=
$$

awrt $0.684 \sim 0.686$
\end{tabular}

\hline (a)

(b) \& | $2^{\text {nd }}$ B1 for.$=22$ or $\sigma^{2}=22^{2}$ or 484 |
| :--- |
| M1 for standardising with their mean and standard deviation (ignore direction of inequality) |
| $1^{\text {st }} \mathrm{M} 1$ for attempting to find Y. Need to see $\pm(M-1.5 W)$ or equiv. May be implied by $\operatorname{Var}(Y)$. |
| $1^{\text {st }} \mathrm{A} 1$ for a correct value for their $\mathrm{E}(Y)$ i.e. usually ± 9. Do not give M1A1 for a "lucky" ± 9. |
| $2^{\text {nd }} \mathrm{M} 1$ for attempting $\operatorname{Var}(Y)$ e.g. $\ldots+1.5^{2} \times 10^{2}$ or $11^{2}+1.5^{2} \times \ldots$ |
| $3^{\text {rd }}$ M1 for attempt to calculate the correct probability. Must be attempting a probability >0.5. |
| Must attempt to standardise with a relevant mean and standard deviation |
| Using $\sigma^{2}{ }_{M}=11$ or $\sigma_{W}^{2}=10$ is not a misread. |

\hline
\end{tabular}

Question number	Scheme ${ }^{\text {a }}$ Marks
5. (a) (b)(i) (ii) (c)	
(a) (b)(i) (ii)	After $1^{\text {st }} \mathrm{B} 1$, comments should be in context, i.e. mention cleaners, managers, types of worker etc $1^{\text {st }} \mathrm{B} 1 \mathrm{~g}$ for one row $2^{\text {nd }}$ B1h for both rows. "Not a random sample" only counts once. Score B1B0 or B1B1 or B0B0 on EPEN $1^{\text {st }} \mathrm{B} 1$ for idea of labelling or getting an ordered list. No need to see 1-550. $2^{\text {nd }} \mathrm{B} 1$ selecting first member of sample using random numbers (1-11 need not be mentioned) $3^{\text {rd }} \mathrm{B} 1$ selecting every nth where $n=11$. $1^{\text {st }}$ M1 for idea of two groups and labelling both groups. (Actual numbers used not required) $2^{\text {nd }}$ M1 for use of random numbers within each strata. Don't give for SRS from all 550. "Assign random numbers to managers and cleaners" scores M0M1 A1 for 5 managers and 45 cleaners. (This mark is dependent upon scoring at least one M)

\begin{tabular}{|c|c|}
\hline Question \& Scheme Marks

\hline $6 .(a)$
(b)
(c)
(d)
(e) \&

\hline (b)

(c)
(d)

(e) \& | M1 Must show clearly how to get either 223 or 1000. As printed or better. |
| :--- |
| A1cso for showing how to get both 223 and 1000 and reaching $p=0.223$ |
| M1 for any correct method (a correct expression) seen for r or s. |
| $1^{\text {st }} \mathrm{A} 1$ for correct value for r awrt 10.74 |
| $2^{\text {nd }} \mathrm{A} 1$ for $s=$ awrt 30.2 |
| $3^{\text {rd }} \mathrm{A} 1$ for $t=3.28$ only |
| B1 for each. The value of p must be mentioned at least once. Accept $\mathrm{B}(10,0.2)$ |
| If hypotheses are correct but with no value of p then score B0B1 |
| Minimum is $X \sim \mathrm{~B}(10,0.2)$. If just $\mathrm{B}(10,0.2)$ and not $\mathrm{B}(10,0.2)$ award B 1 B 0 |
| M1 for combining groups (must be stated or implied by a new table with combined cell seen) |
| A1 for the calculation $4=5-1$ |
| M1 for a correct statement based on 4.17 and their cv (context not required) (may be implied) |
| Use of 4.17 as a critical value scores B0M0A0 |
| A1 for a correct interpretation in context and $p=0.2$ and cuttings mentioned. |

\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Question number \& Scheme ${ }^{\text {a }}$ Marks

\hline 7. (a) \&

\hline (a)

(b) \& | $1^{\text {st }}$ M1 for an attempt at $\frac{a-b}{\sqrt{\frac{c}{100 \text { or } 200}+\frac{d}{100 \text { or } 200}}}$ |
| :--- |
| with 3 of a, b, c or d correct |
| $1^{\text {st }} \mathrm{A} 1$ for a fully correct expression |
| $2^{\text {nd }} \mathrm{B} 1$ for ± 1.96 but only if their H_{1} is two-tail (it may be in words so B0B1 is OK) |
| If H_{1} is one-tail this is automatically B 0 too. |
| $2^{\text {nd }}$ M1 for a correct statement based on comparison of their z with their cv . May be implied |
| $3^{\text {rd }} \mathrm{A} 1$ for a correct conclusion in context based on their z and 1.96. |
| Must mention junk food or money and male vs female. |
| B1 for \bar{F} or \bar{M} mentioned. Allow "mean (amount spent on junk food) is normally distributed" Read the whole statement e.g. " original distribution is normal so mean is..." scores B0 |

\hline
\end{tabular}

June 2008
6686 Statistics S4
Mark Scheme

Question Number	Scheme	Marks
1 a	$\begin{array}{rlr} \mathrm{E}\left(\theta_{1}\right) & =\frac{\mathrm{E}\left(X_{3}\right)+\mathrm{E}\left(X_{4}\right)+\mathrm{E}\left(X_{5}\right)}{3} \\ & =\frac{3 \mu}{3} \\ & =\mu \quad \text { Bias }=0 \end{array}$ allow unbiased	B1
	$\begin{aligned} \mathrm{E}\left(\theta_{2}\right) & =\frac{E\left(X_{10}\right)-E\left(X_{1}\right)}{3} \\ & =1 / 3\left(\tilde{C}_{.} \quad \text { Bias }=-\mu \quad . \text { allow } \pm \mu\right. \\ & =0 \quad \end{aligned}$	B1,B1
	$\begin{aligned} \mathrm{E}\left(\theta_{3}\right) & =\frac{3 \mathrm{E}\left(X_{1}\right)+2 \mathrm{E}\left(X_{2}\right)+\mathrm{E}\left(X_{10}\right)}{6} \\ & =\frac{3 \mu+2 \mu+\mu}{6} \\ & =\mu \quad \text { Bias }=0 \end{aligned}$ allow unbiased	B1 (4)
b	$\begin{aligned} \operatorname{Var}\left(\theta_{1}\right) & =\frac{1}{9}\left\{\left(\operatorname{Var} X_{2}\right)+\operatorname{Var}\left(X_{3}\right)+\operatorname{Var}\left(X_{4}\right)\right\} \\ & =\frac{1}{9}\left\{\sigma^{2}+\sigma^{2}+\sigma^{2}\right\} \\ & =\frac{1}{3} \sigma^{2} \end{aligned}$	M1 A1
	$\operatorname{Var}\left(\theta_{2}\right)=\frac{2}{9} \sigma^{2}$	B1
	$\begin{aligned} \operatorname{Var}\left(\theta_{3}\right) & =\frac{1}{36}\left\{9 \sigma^{2}+4 \sigma^{2}+\sigma^{2}\right\} \\ & =\frac{7}{18} \sigma^{2} \end{aligned}$	M1 A1
ci)	θ_{1} is the better estimator. It has a lower var. and no bias	(5) B1 depB1
ii)	θ_{2} is the worst estimator. It is biased	B1 depB1

Question Number	Scheme	Marks
2 a	$\mathrm{H}_{1}: \sigma_{\mathrm{A}}^{2}=\sigma_{\mathrm{B}}{ }^{2} \quad \mathrm{H}_{0}: \sigma_{\mathrm{A}}{ }^{2} \neq \sigma_{\mathrm{B}}{ }^{2}$	B1
	$\mathrm{S}_{\mathrm{A}}{ }^{2}=22.5 \quad \mathrm{~S}_{\mathrm{B}}{ }^{2}=21.6 \quad$ awrt	M1 A1A1
	$\frac{s_{1}^{2}}{s_{2}^{2}}=1.04$	M1 A1
	$\mathrm{F}_{(8,6)}=4.15$	B1
	$1.04<4.15$ do not reject H_{0}. The variances are the same.	B1 (8)
b	Assume the samples are selected at random, (independent)	B1 (1)
c	$s_{\mathrm{p}}^{2}=\frac{8(22.5)+6(21.62)}{14}=22.12 \quad \text { awrt } 22.1$	M1 A1
	$\mathrm{H}_{0}: \mu_{\mathrm{A}}=\mu_{\mathrm{B}} \quad \mathrm{H}_{1}: \mu_{\mathrm{A}} \neq \mu_{\mathrm{B}}$	B1
	$t=\frac{40.667-39.57}{\sqrt{22.12} \sqrt{\frac{1}{9}+\frac{1}{7}}}$	M1
	$=0.462 \quad 0.42-0.47$	A1
	Critical value $=t_{14}(2.5 \%)=2.145$	B1
	$0.462<2.145$ No evidence to reject H_{0}. The means are the same	B1 (7)
d	Music has no effect on performance	B1

Question	Scheme	Marks
3	Differences 2.1 $-0.7 \quad 2.6-1.7 \quad 3.31 .61 .71 .21 .6 \quad 2.4$ $\bar{d}=1.41$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$
	$\mathrm{H}_{0}: \mu_{\mathrm{d}}=0 \quad \mathrm{H}_{1}: \mu_{\mathrm{d}}>0$	B1
	$s=\sqrt{\frac{40.65-10 \times 1.41^{2}}{9}}=1.5191 \ldots$	M1
	$t=\frac{1.41}{\left(\frac{1.519 \ldots}{\sqrt{10}}\right)}=2.935 \ldots \quad \quad \text { awrt } 2.94 / 2.93$	M1 A1
	$t_{9}(1 \%)=2.821$	B1
	2.935.. >2.821 Evidence to reject H_{0}. There has been an increase in the mean weight of the mice.	B1ft
		(8)

2 sample test can score
M0 M0
B 1 for $\mathrm{H}_{0}: \mu_{\mathrm{A}}=\mu_{\mathrm{B}} \quad \mathrm{H}_{1}: \mu_{\mathrm{A}}<\mu_{\mathrm{B}}$
M1 $\frac{9 \times 24.5+9 \times 17.16}{18}$
M0 A0
B1 2.552
B1 ft
ie $4 / 8$

Question Number	Scheme	Marks
4a	$\bar{x}=668.125 \quad s=84.428$	M1 M1
	$T_{7}(5 \%)=1.895$	B1
	$\text { Confidence limits }=668.125 \pm \frac{1.895 \times 84.428}{\sqrt{8}}$	M1
	$\begin{aligned} = & =611.6 \text { and } 724.7 \\ \text { Confidence interval } & =(612,725) \end{aligned}$	A1A1
b	Normal distribution	B1 ${ }^{(6)}$
c	$£ 650$ is within the confidence interval. No need to worry.	$\begin{array}{r} (1) \\ \mathrm{B} 1 \sqrt{ } \mathrm{~B} 1 \sqrt{2} \\ (2) \end{array}$

Question Number	Scheme	Marks
5 a		
b	$\begin{aligned} \text { Confidence interval } & =\left(\frac{15 \times 0.003}{27.488}, \frac{15 \times 0.003}{6.262}\right) \\ & =(0.00164,0.00719) \end{aligned}$	M1 B1B1 A1 A1 (5)
	$0.07^{2}=0.0049$	M1
	0.0049 is within the 95% confidence interval.	A1
	There is no evidence to reject the idea that the standard deviation of the volumes is not 0.07 or The machine is working well.	A1
		(3)

June 2008
6689 Decision Mathematics D1
Mark Scheme

Question Number	Scheme	Marks
Q2 (a)	$\mathrm{G}-5=\mathrm{W}-3$ change status $\mathrm{G}=5-\mathrm{W}=3$	M1 A1 (2)
(b)	$\begin{aligned} & \mathrm{A}=\text { no match } \\ & \mathrm{E}=2 \\ & \mathrm{G}=5 \\ & \mathrm{R}=4 \\ & \mathrm{~W}=3 \end{aligned}$	A1 (1)
(c)	e.g. R is the only person who can do 1 and the only person who can do 4	B 2, 1, 0 (2)
(d)	$\mathrm{A}-2=\mathrm{E}-3=\mathrm{W}-4=\mathrm{R}-1$ change status $A=2-E=3-W=4-R=1$	M1 A1
	$\begin{align*} & \mathrm{A}=2 \\ & \mathrm{E}=3 \\ & \mathrm{G}=5 \tag{3}\\ & \mathrm{R}=1 \\ & \mathrm{~W}=4 \end{align*}$	Total 8
	Notes: (a) 1M1: Path from G to 3 1A1: CAO including change status (stated or shown), chosen path clear. (b) 2A1: CAO must ft from stated path (c) 1B1: Correct answer, may be imprecise or muddled (bod gets B1) but all nodes refered to must be correct. 2B1: Good, clear, correct answer. (d) 1M1: Path from A to 1 1A1: CAO including change status (stated or shown) but don't penalise twice. Chosen path clear. 1A1: CAO must ft from stated path Misread (remove last two A or B marks if earned.) $A-2=E-3$ c.s. $A=2-E=3$ Matching $A=2, E=3, R=4 W=5$ Then $\mathrm{G}-5=\mathrm{W}-4=\mathrm{R}-1 \text { c.s. } \mathrm{G}=5-\mathrm{W}=4-\mathrm{R}=1$ Matching $\mathrm{A}=2, \mathrm{E}=3, \mathrm{G}=5, \mathrm{R}=1, \mathrm{~W}=4$	

Question Number	Scheme	Marks
(a) (b)	Route: ADGHI Length: 48 (km) Odd vertices are A and H Attempt to find shortest route from A to $\mathrm{H}=\mathrm{ADGH}$ New length: $197+36=233$ Route: e.g. ADGHGDACEDHIFHEFBA (18) Notes: (a) 1M1: Smaller number replacing larger number in the working values at E or F or H or I. (generous - give bod) 1A1: All values in boxes A to E and G correct 2A1ft: All values in boxes F, H and I correct (ft). Penalise order of labelling just once. 3A1: CAO (not ft) 4A1ft: Follow through from their I value, condone lack of units here. (b) 1B1: A and H identified in some way - allow recovery from M mark. 1M1: Accept, if correct, path, or its length. Accept attempt if finding shortest. 1A1ft: 197 + their shortest A to H (36) 2A1: A correct route.	M1 A1 Alft A1 Alft (5) B1 M1 Alft A1 (4) Total 9

Question Number	Scheme	Marks
(a) (b)(i) (ii)	e.g. - Prims starts with any vertex, Kruskal starts with the shortest arc. - It is not necessary to check for cycles when using Prim. - Prims adds nodes to the growing tree, Kruskal adds arcs. - The tree 'grows' in a connected fashion when using Prim. - Prim can be used when data in a matrix form. Other correct statements also get credit. e.g. AC, CF, FD, DE, DG, AB. $\mathrm{CF}, \mathrm{DE}, \mathrm{DF}$, not CD, not EF, DG, not FG, not EG, AC , not AD, AB. $[18,19,20, \operatorname{not} 21, \operatorname{not} 21,22, \operatorname{not} 23, \operatorname{not} 24,25, \operatorname{not} 26,27]$ Notes: (a) 1B1: Generous one correct difference. If bod give B1 2B1: Generous two distinct, correct differences. (b) 1M1: Prim's algorithm - first three arcs chosen correctly, in order, or first four nodes chosen correctly, in order. 1A1: First five arcs chosen correctly; all 7 nodes chosen correctly, in order. 2A1: All correct and arcs chosen in correct order. 2M1: Kruskal's algorithm - first 4 arcs selected chosen correctly. 1A1: All six non-rejected arcs chosen correctly. 2A1: All rejections correct and in correct order and at correct time.	B 2, 1, 0 (2) M1, A1, A1 (3) M1, A1, Al (3) Total 8

Question Number	Scheme	Marks
Q5		
(a)	$x=9, y=11$	B1,B1 (2)
(b)	AC DC DT ET	B2,1,0 (2)
(c)	36	B1 (1)
(d)	$\mathrm{C}_{1}=49, \quad \mathrm{C}_{2}=48, \mathrm{C}_{3}=39$	$\mathrm{B} 1, \mathrm{~B} 1, \mathrm{~B} 1$
(e)	e.g. SAECT	B1 (1)
(f)	maximum flow $=$ minimum cut cut through DT, DC, AC and AE	M1 A1 (2)
	Notes: (a) 1B1: cao (permit B1 if 2 correct answers, but transposed) 2B1: cao (b) 1B1: correct (condone one error - omission or extra) 2B1: all correct (no omissions or extras) (c) $1 \mathrm{~B} 1:$ cao (d) 1B1: cao 2B1: cao 3B1: cao (e) 1B1: A correct route (flow value of 1 given) (f) 1M1: Must have attempted (e) and made an attempt at a cut. 1A1: cut correct - may be drawn. Refer to max flow-min cut theorem three words out of four.	

Question	Scheme	Marks
Q8	Maximise $(\mathrm{P}=) 0.2 a+0.15 b$ or $20 a+15 b$ o.e. Subject to $\begin{aligned} a+b & \leq 800 \\ a & \geq 2 b \\ 50 & \leq b \leq 100 \\ a & \geq 0 \end{aligned}$ Notes: 1B1: 'Maximise' 2B1: ratio of coefficients correct 3B1: cao 4B1: ratio of coefficients of a and b correct. 5B1: inequality correct way round i.e. $\square a \geq \square b$ 6B1: cao accept $<-$ accept two separate inequalities here 7B1: cao - Penalise $<$ and $>$ only once with last B mark earned - Be generous on letters $\mathrm{a}, \mathrm{b}, \mathrm{A}, \mathrm{B}, \mathrm{x}, \mathrm{y}$ etc and mixed, but remove last B mark earned if inconsistent or 3 letters in the ones marked.	B1 B1 (2) B1 B2,1,0 B1 B1 (5) Total 7

Question Number	Scheme	Marks
(a) (b)	A walk is a finite sequence of arcs such that the end vertex of one arc is the start vertex of the next. A tour is a walk that visits every vertex, returning to its stating vertex. Notes: (a) 1B1: Probably one of the two below but accept correct relevant statement- bod gets B1, generous. 2B1: A good clear complete answer: End vertex=start vertex + finite. (b) 1B1: Probably one of the two below but accept correct relevant statement- bod gets B1, generous. 2B1: A good clear complete answer: Every vertex + return to start. From the D1 and D2 glossaries D1 A path is a finite sequence of edges, such that the end vertex of one edge in the sequence is the start vertex of the next, and in which no vertex appears more than once. A cycle (circuit) is a closed path, ie the end vertex of the last edge is the start vertex of the first edge. D2 A walk in a network is a finite sequence of edges such that the end vertex of one edge is the start vertex of the next. A walk which visits every vertex, returning to its starting vertex, is called a tour.	B2,1,0 B2,1,0 (4) Total 4

Question Number	Scheme					Marks
(a) (b)	Maximin : we seek a route where the shortest arc used is a great as possible. Minimax : we seek a route where the longest arc used is a small as possible.					B2,1,0 (2)
	Stage	State	Action	Dest.	Value	
		G	GR	R	132*	
	1	H	HR	R	175*	M1A1 (2)
		I	IR	R	139*	
		D	DG	G	$\min (175,132)=132$	
			DH	H	$\min (160,175)=160^{*}$	M1A1
	2	E	EG	G	$\min (162,132)=132$	
			EH	H	$\min (144,175)=144 *$	A1 (3)
			EI	I	$\min (102,139)=102$	A1 (3)
		F	FH	H	$\min (145,175)=145^{*}$	
			FI	1	$\min (210,139)=139$	
		A	AD	D	$\min (185,160)=160^{*}$	
			AE	E	$\min (279,144)=144$	M1A1ft
	3	B	BD	D	$\min (119,160)=119$	
			BE	E	$\min (250,144)=144^{*}$	A1ft
			BF	F	$\min (123,145)=123$	
		C	CE	E	$\min (240,144)=144$	
			CF	F	$\min (170,145)=145^{*}$	
		L	LA	A	$\min (155,160)=155^{*}$	Alft
	4		LB	B	$\min (190,144)=144$	
			LC	C	$\min (148,145)=145$	
	Maximin route: LADHR					Alft (5)
						Total 12

Question Number	Scheme	Marks
Q4 (a) (b) (c) (d)	For each row the element in column x must be less than the element in column y . Row minimum $\quad\{2,4,3\} \quad$ row maximin $=4$ Column maximum $\{6,5,6\}$ column minimax $=5$ $4 \neq 5 \text { so not stable }$ Row 3 dominates row 1, so matrix reduces to Let Liz play 2 with probability p and 3 with probability ($1-\mathrm{p}$) If Mark plays 1: Liz's gain is If Mark plays 2: Liz's gain is If Mark plays 3: Liz's gain is $4 p+6(1-p)=6-2 p$ $5 \mathrm{p}+4(1-\mathrm{p})=4+\mathrm{p}$ $6 p+3(1-p)=3+3 p$ $4+p=6-2 p$ $p=\frac{2}{3}$ Liz should play row 1 - never, row $2-\frac{2}{3}$ of the time, row $3-\frac{1}{3}$ of the time and the value of the game is $4 \frac{2}{3}$ to her. Row 3 no longer dominates row 1 and so row 1 can not be deleted. Use Simplex (linear programming).	B2, 1,0 M1 M1 A1 (3) A1 B1 M1 A1 (3) B2, 1ft, 0 (2) M1 A1 A1ft A1 (4) B1 B1 (2) Total 16

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA020308 Summer 2008

For more information on Edexcel qualifications, please visit www.edexcel.org.uk/qualifications

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

