Mark Scheme (Results) J anuary 2007

GCE

GCE Mathematics

Mechanics M3 (6679)

J anuary 2007
6679 Mechanics M3
Mark Scheme

Question Number	Scheme	Marks
1.	(a) Maximum speed when accel. $=0$ (o.e.) (b) $\begin{aligned} & \quad \frac{1}{12}(30-x)=v \frac{\mathrm{~d} v}{\mathrm{~d} x} \quad(\text { acceln }=\ldots+\text { attempt to integrate }) \\ & \text { Use of } v \frac{\mathrm{~d} v}{\mathrm{~d} x}: \quad \frac{v^{2}}{2}=\frac{1}{12}\left(30 x-\frac{x^{2}}{2}\right)(+c) \end{aligned}$ Substituting $x=30, v=10$ and finding $c(=12.5)$, or limits $v^{2}=25+5 x-\frac{1}{12} x^{2}(\text { o.e. })$ (a) Allow "acceln >0 for $x<30$, acceln <0 for $x>30$ " Also "accelerating for $x<30$, decelerating for $x>30$ " But "acceln <0 for $x>30$ " only is B0 (b) $1^{\text {st }} \mathrm{M} 1$ will be generous for wrong form of acceln (e.g. $\left.\mathrm{d} v / \mathrm{d} x\right)$! $3^{\text {rd }}$ M1 If use limits, they must use them in correct way with correct values Final A1. Have to accept any expression, but it must be for v^{2} explicitly (not $1 / 2 v^{2}$), and if in separate terms, one can expect like terms to be collected. Hence answer in form as above, or e.g. $\frac{1}{12}\left(300+60 x-x^{2}\right)$; also $100-\frac{1}{12}(30-x)^{2}$	$\begin{aligned} & \text { B1 } \\ & \quad \\ & \text { M1 } \\ & \downarrow \\ & \text { M1 A1 } \\ & \\ & \downarrow \\ & \text { M1 } \\ & \\ & \text { A1 } \end{aligned}$

2.		$\begin{gather*} \text { M1 A1 } \tag{5}\\ \downarrow \\ \text { M1 } \\ \\ \downarrow \\ \text { M1 A1 } \end{gather*}$

3.	(a) $\begin{gathered} \text { E.P.E. }=\frac{1}{2} \frac{3.6 m g}{a} x^{2}=\frac{1}{2} \frac{3.6 m g}{a}\left(\frac{a}{3}\right)^{2} \\ =\underline{0.2 m g a} \end{gathered}$ (b) \quad Friction $=\mu m g \Rightarrow$ work done by friction $=\mu m g\left(\frac{4 a}{3}\right)$ $\text { Work-energy: } \frac{1}{2} m .2 g a=\mu m g d+0.2 m g a$ terms) Solving to find $\mu: \quad \mu=0.6$ (b) $1^{\text {st }} \mathrm{M} 1$: allow for attempt to find work done by frictional force (i.e. not just finding friction). $2^{\text {nd }}$ M1: "relevant" terms, i.e. energy or work terms! A 1 f.t. on their work done by friction	$\begin{array}{ll} \text { M1 A1 } \\ \text { A1 } \\ & \\ \text { M1 A1 } \\ \text { M1 } & \\ \text { M1 A1 } \sqrt{ } \tag{6}\\ \downarrow & \\ \text { M1 A1 } \end{array}$

6.
(a) Moments: $\pi \int_{1}^{2} x y^{2} \mathrm{~d} x=V \bar{x}$ or $\int_{1}^{2} x y^{2} \mathrm{~d} x=\bar{x} \int_{1}^{2} y^{2} \mathrm{~d} x$

$$
\begin{align*}
& \int_{1}^{2} y^{2} \mathrm{~d} x=\int_{1}^{2} \frac{1}{4 x^{4}} \mathrm{~d} x=\left[-\frac{1}{12 x^{3}}\right]_{1}^{2} \quad\left(=\frac{7}{96}\right) \tag{either}\\
& \int_{1}^{2} x y^{2} \mathrm{~d} x=\int_{1}^{2} \frac{1}{4 x^{3}} \mathrm{~d} x=\left[-\frac{1}{8 x^{2}}\right]_{1}^{2} \quad\left(=\frac{3}{32}\right)
\end{align*}
$$

Solving to find $\bar{x}\left(=\frac{9}{7}\right) \quad \Rightarrow$ required dist $=\frac{9}{7}-1=\frac{2}{7} \mathrm{~m}(*)$

Dist of CM from base

$$
\frac{19}{16} \mathrm{~m}
$$

$$
\frac{5}{7} \mathrm{~m}
$$

$$
\bar{x}
$$

Moments: $\quad\left[=\frac{1}{12}(\rho) \pi\right]\left(\frac{19}{16}\right)+(\rho) \frac{7 \pi}{96}\left(\frac{5}{7}\right)=\left[\frac{5}{32}(\rho) \pi\right] \bar{x}$

$$
\begin{equation*}
\bar{x}=\frac{29}{30} \mathrm{~m} \text { or } 0.967 \mathrm{~m}(\mathrm{awrt}) \tag{7}
\end{equation*}
$$

B1 B1

M1 A1

Allow distances to be found from different base line if necessary
7.
(a)

(b)

$$
\begin{gather*}
T=\frac{39.2}{0.8}(x+0.05) \\
m \mathrm{~g}-T=m a \\
0.25 \mathrm{~g}-\frac{39.2}{0.8}(x+0.05)=0.25 \quad \ddot{x} \text { (or equivalent) } \\
\ddot{x}=-196 x \\
\text { SHM with period } \frac{2 \pi}{\omega}=\frac{2 \pi}{14}=\frac{\pi}{7} \mathrm{~s} \quad(*) \tag{*}
\end{gather*}
$$

(c)

$$
\begin{aligned}
& v=14 \sqrt{ }\left\{(0.1)^{2}-(0.05)^{2}\right\} \\
= & 1.21(24 \ldots) \approx \underline{1.21 \mathrm{~m} \mathrm{~s}^{-1}}(3 \text { s.f. }) \text { Accept } 7 \sqrt{ } 3 / 10
\end{aligned}
$$

(d) Time T under gravity $=\frac{1.21 . .}{\mathrm{g}}(=0.1237 \mathrm{~s})$

$$
\text { Complete method for time } T^{\prime} \text { from } B \text { to slack. }
$$

$\left[\begin{array}{l}\uparrow \\ \text { e.g. } \frac{\pi}{28}+t \text {, where } 0.05=0.1 \sin 14 t\end{array}\right.$
OR T^{\prime}, where $\left.-0.05=0.1 \cos 14 T^{\prime}\right]$

$$
T^{\prime \prime}=0.1496 \mathrm{~s}
$$

Total time $=T+T^{\prime}=\underline{0.273 \mathrm{~s}}$
(b) $\quad 1^{\text {st }} \mathrm{M} 1$ must have extn as $x+k$ with $k \neq 0$ (but allow M1 if e.g. $x+0.15$), or must justify later

For last four marks, must be using $\ddot{x}(\operatorname{not} a)$
(c) Using $x=0$ is M0
(d) M1 - must be using distance for when string goes slack. Using $x=-0.1$ (i.e. assumed end of the oscillation) is M0

