Formula List

Volume of prism $=$ area of cross-section \times length

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$

Curved surface area of cone $=\pi r l$

In any triangle $A B C$
Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$

Area of triangle $=\frac{1}{2} a b \sin C$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$
where $a \neq 0$ are given by

$$
x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}
$$

Standard Deviation

Standard deviation for a set of numbers
$x_{1}, x_{2}, \ldots, x_{n}$, having a mean of \bar{x} is given by

$$
s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}} \text { or } s=\sqrt{\frac{\sum x^{2}}{n}-\left\{\frac{\sum x}{n}\right\}^{2}}
$$

A fishing boat F is anchored in the bay.
The bearing of F from Llandudno is 345°.
The bearing of F from Blackpool is 280°
By drawing suitable lines mark the position of F on the above diagram.
1.
2. While on holiday in America, Katherine bought a camera for $\$ 470$.

Colin, while on holiday in Spain, bought the same model camera for 324 euros
The rates of exchange at the times the cameras were purchased were $£ 1=\$ 1.88$ and $£ 1=1.44$ euros.

Showing all your working, find out who purchased the camera for the lower price and write down the difference in the prices.

Kans par $470 \div 1.88=E 250$
Colin pap $324 \div 1.44= \pm 237.50$
Free $d y=t 12.50$
. paid the lower price
The difference in the prices was

Using the graph paper on the following page, draw the graph of the straight line $y=2 x-3$ for values of x from -2 to +3 .

On the same graph paper draw the line $y=-2$.
Write down the coordinates of the point at which the straight line $y=2 x-3$ cuts the line $y=-2$.
Coordinates are $(\mathrm{O} \cdot 5,-2$
when $x=0$

$$
\begin{aligned}
& y=2 \times 0-3 \\
& y=-3 \quad(0,-3) \\
& y=2 x 2-3 \quad(2 ; 1) \\
& =4-3 \\
& =1
\end{aligned}
$$

when $x=2 \quad \begin{aligned} & y=2 \times 2-3 \\ & =4-3\end{aligned} \quad(2 ; 1)$
4.

Sam's Electrical Shop

Turbo washing machine
$£ 330+$ VAT at 17.5%

Ann decides to buy a new Turbo washing machine.
She notes the prices shown above, at Sam's Electrical Shop and at Discount Electrics.
Ann buys the machine in the shop offering the lower price.
In which shop does Ann buy the washing machine and how much cheaper is it in this shop than in the other shop?

Sans is cheaper by $f 20.25$
\qquad
\qquad
\qquad
\qquad
5. The diagram shows three points A, B and C, which are on level ground. The point B is 55 m due East of A.
The point C is due North of A and 95 m from B.

Diagram not drawn to scale.

Calculate the distance $A C$, giving your answer to an appropriate degree of accuracy.

$$
\begin{aligned}
& A C^{2}=95^{2}-55^{2} \\
& A C^{2}=6000 \\
& A C=\sqrt{6000}=77.5 \mathrm{M}
\end{aligned}
$$

7. A solution of the equation $x^{3}+2 x-5=0$ lies between $x=1$ and $x=2$. Find this solution giving your answer correct to one decimal place.
\qquad

Height $(h$ centimetres $)$	Number of Christmas trees
$191 \leqslant h \leqslant 197$	24
$198 \leqslant h \leqslant 204$	35
$205 \leqslant h \leqslant 211$	28
$212 \leqslant h \leqslant 218$	23

Find an estimate for the mean height of the Christmas trees.

$$
\begin{aligned}
194 \times 24 & =4656 \\
201 \times 35 & =7035 \\
208 \times 28 & =5 \times 24 \\
215 \times 23 & =\frac{4945}{22460} \div 110=204.2 \mathrm{~cm}
\end{aligned}
$$

\qquad
\qquad
\qquad
9. Manor wants to carry out a survey in order to find out how often people visit a dentist.
(a) She wrote the following question.

How often do you visit a dentist?
\square Not often \square Often \square Very often

What do you see wrong with this question and how would you improve it? too vague

How may times in the lent year hare you valid a de bent

(b) Another of the questions in her questionnaire was

Which age group are you in?
\square 30-40 \square $40-50$ \square 50 and above

Write down two criticisms of this question.
(i) overlap by which box would you ticked you we 40?
(ii) Nowhere for under 30' ko tick. Lot would kiel $50+$ above.
10. The invests $£ 800$ for 3 years at 5% per annum compound interest. How much money is in the account after 3 years?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
11. (a) A cylinder has a uniform circular cross section of radius of 4.7 cm and a height of 23.5 cm . Calculate the volume of the cylinder, stating the units of your answer.

\qquad
\qquad
\qquad
(b)

Diagram not drawn to scale.
$P Q R S$ is a rectangle in which $P Q=13.6$ metres and $Q R=8.3$ metres. Calculate the length of the diagonal $P R$.

$$
\begin{aligned}
& P R^{2}=13.6^{2}+8.3^{2} \\
& P R^{2}=253.85 \\
& P R=\sqrt{2 \sqrt{3} .85}=15.9 \mathrm{M}
\end{aligned}
$$

f
\qquad
\qquad
13. (a) Expand the following expression, simplifying your answer as far as possible.
(i) 53000000000 \qquad
(ii) 0.00000002

(b) Find, in standard form, the value of:

$$
4.964 \times 10^{-8}
$$

16. A European supermarket employs people from a number of countries. The number of people employed by the company in each country is given in the following table.

Country	Number of employees
Germany	12355
France	8340
Spain	6860
Italy	4100
United Kingdom	3045

The company is organising a conference and decides to invite a total of 45 employees to represent the views of the entire workforce.

Use a stratified sampling method to calculate how many people from each country should be invited to the conference.

$$
\text { Total Euplaqen }=34700
$$

Germy $=12355 / 34700 \times 45=16.0$	16
France $=8340 / 34700 \times 45=10.8$	11
Spain $=6860 / 34770045=8.9$	9
Tray $=4100 / 3400 \times 45=5 .-3$	5
Uk $=3845 / 34700 \times 45=3.9$	$\frac{4}{\square}$

(b) A ladder, 21 m long, is placed against a vertical wall. The foot of the ladder is 13 m from the wall on horizontal ground. Calculate the angle which the ladder makes with the horizontal.
$\cos \theta=\frac{13}{21}$

$$
\theta=\operatorname{Cos}^{-1}\left(\frac{1}{21}\right)=51.8^{\circ}
$$

17. Given that y is inversely proportional to x^{2}, and that $y=2$ when $x=15$,
(a) find an expression for y in terms of x,

(b) calculate y when $x=10$.

$$
y=\frac{450}{10^{2}}=\frac{450}{100}=4.5
$$

18. On the graph paper provided, draw the region which satisfies all of the following inequalities.

$$
\begin{aligned}
x+y & \leqslant 8 \\
y & \geqslant 2 x+5 \\
x & \geqslant-3
\end{aligned}
$$

Make sure that you clearly indicate the region that represents your answer.
$x+y=8 \quad$ when $x=0 \quad y=8 \quad(0,8)$
who $y=0 \quad x=8 \quad(8,0)$
$y=2 x+5$ whex:0 $y=5 \quad(0,5)$ where $y=2 x+5=9 \quad(2,9)$
\qquad
\qquad

20. In the diagram below $A D=8.7 \mathrm{~cm}, A B=12.1 \mathrm{~cm}, C D=6.3 \mathrm{~cm}, \widehat{C D B}=25^{\circ}$ and $\widehat{D A B}=80^{\circ}$.
19. (a) Factorise the expression $8 x^{2}-26 x-7$ and hence solve the equation $8 x^{2}-26 x-7=0$.
(56) $-28+2$

$$
\begin{gathered}
8 x^{2}+2 x-28 x-7 \\
2 x(4 x+1)-7(4 x+1) \\
(2 x-7)(4 x+1)=0
\end{gathered}
$$

ether $2 x-7=0$ or $4 x+1=0$

$$
\begin{equation*}
x=\frac{7}{2} \quad x=\frac{-1}{4} \tag{3}
\end{equation*}
$$

(b) Use the formula method to solve the equation $3 x^{2}+6 x-11=0$, giving solutions correct to two decimal places.

$$
\begin{gathered}
a=3, b=6, c=-11 \\
x=\frac{-6 \pm \sqrt{6^{2}-4 \times 3 x-11}}{2 \times 3}=\frac{-6 \pm \sqrt{36+132}}{6} \\
x=-\frac{6 \pm \sqrt{(6)^{2}}}{6}
\end{gathered}
$$

\therefore ext $x=\frac{-6+\sqrt{16 y}}{6}=1.16$
$\Rightarrow x=-\frac{6-\sqrt{168}}{6}=-3.16$

(a) Calculate the length of $B D$.

Cove rule $a^{2}=b^{2}+d^{\prime}-2 b d \operatorname{Cos} A$

$$
\begin{align*}
& a^{2}=8.7^{2}+12.1^{2}-(2 \times 8.7 \times 12.1 \times \cos 80) \\
& a^{2}=222.1-36.56 \\
& a^{2}=185.54 \\
& a=\sqrt{185 \cdot 54}=13.6 \tag{3}
\end{align*}
$$

(b) Calculate the area of the quadrilateral $A B C D$.

Areas quad $A B C O=$ Aram $\triangle A B O$ - Ara of $\triangle B C O$

$$
\begin{aligned}
& =\left(\frac{1}{2} \times 8.7 \times 12.1 \times \sin 80\right)-\left(\frac{1}{2} \times 6.3 \times 13.6 \times \sin 25\right) \\
& =51.83-18.10 \\
& =33.7 \mathrm{~cm}
\end{aligned}
$$

21. The diagram below shows the sketch of $y=\sin x$ for values of x from 0° to 360°.

Find all solutions of the following equation in the range 0° to 360°.
From call $x=\sin ^{-1}(-0.454)=-27^{\circ}$
fro- symuety au graph

$$
\begin{aligned}
& x=180+27=207^{\circ} \\
& x=360-27=333^{\circ}
\end{aligned}
$$

22. Solve the equation $\frac{n}{n+3}+\frac{7}{n+4}=1$.

$$
\begin{aligned}
& x(n+3)(n+4) \\
& (n+3)(n+4) \times n+(n+3) \\
& n(n+4)(n+4) \times 7 \\
& n+7(n+3)=(n+3)(n+4) x 1 \\
& n^{2}+11 n+21+4 n+7 n+21=n^{2}+4 n+3 n+12 \\
& n^{2}+4 n+9
\end{aligned}
$$

