Sune 05 Papcer 2 Souvtions

Formula List

Volume of prism $=$ area of cross-section \times length

Volume of sphere $=\frac{4}{3} \pi r^{2}$
 Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$

Curved surface area of cone $=\pi r l$

In any triangle $A B C$

Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$

Area of triangle $=\frac{1}{2} a b \sin C$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$
where $a \neq 0$ are given by

$$
x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}
$$

Standard Deviation

Standard deviation for a set of numbers

$x_{1}, x_{2}, \ldots, x_{n}$, having a mean of \bar{x} is given by

$$
s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}} \text { or } s=\sqrt{\frac{\sum x^{2}}{n}-\left\{\frac{\sum x}{n}\right\}^{2}}
$$

. In an examination, pupils have to undertake a practical test and a written test. The table below shows the results obtained by 6 pupils who took the tests.

Practical Test	21	34	72	56	25	41
Written Test	70	54	23	38	72	49

(a) On the graph paper provided draw a scatter diagram of these results.

Written Tes

(b) Describe the cogrelation between the two sets of tests scores.

Abgatue

John and Lynda share $£ 248$ in the ratio of $1: 7$. How much does each receive?

$$
1+7=8 \quad 248 \div 8=31
$$

Toll get +31

$$
\text { Lind get } \in 31 \times 7=-217
$$

John receives \qquad Lynda receives

A designer makes a piece of jewellery for $£ 48$ and sells it at a profit of 45%.
What is the selling price?
\qquad

$$
1.45 \times 48=f 69.60
$$

4. Mrs. Hughes received an electricity bill. The details were as follows.

Present meter reading	69285
Previous meter reading	68672
Charge per unit	7.2 pence per unit
Service charge	$£ 8.50$

(a) Showing all your working, find the cost, in $£$, of the electricity including the service charge.
N^{\prime} of Units vel $=69285-68672=613$
Cost of ants $=613 \times 7.2=4413.6$ pera $=t 44.14$

$$
T_{D} t_{a l}=44.14+8.50=E-52.64
$$

(b) Find the total cost when VAT is added at the rate of 5%.

$$
1.05 \times 52.64=E 55.27
$$

\qquad
\qquad
\qquad
5. Alice, Bethan and Catrin are sisters.

Let Alice be x years old.
(a) Bethan is 7 years older than Alice. Write down in terms of x the age of Bethan.

$$
x+7
$$

(b) Catrin is twice as old as Alice. Write down in terms of x the age of Catrin.
\qquad
(c) The sum of the ages of Alice, Bethan and Catrin is 59 years. Form an equation in x and solve it to find Alice's age.

$$
\begin{aligned}
& x+2 x+x+7=59 \\
& 4 x=52 \\
& x=\frac{52}{4}=13
\end{aligned}
$$

6. (a) Calculate the circumference of a circle with a diameter of 3.7 cm .

$$
11 \times 3.7=11.6 \mathrm{~cm}
$$

\qquad
\qquad
\qquad
(b) Calculate the area of a circle with a radius of 4.9 cm .

$$
1 T \times 4.9^{2}=75.4 \mathrm{~cm}^{2}
$$

9. Use the graph paper below to draw the graph of the straight line $y=2 x+6$.

$$
\text { whee } x=0 \quad y=2 \times 0+6=6 \quad(0,6)
$$

when $x=2 \quad y=2 \times 2+6=4+6=10 \quad(2,10)$
(a) Are there any other colours of bead in the bag? You must give a reason for your answer.

$$
0.2+0.3+0.4+0.1=1
$$

No otter colour because to tel probability $=1$
\qquad
(b) One bead is selected from the bag at random. What is the probability that the selected bead is not green?

$$
1-0.3=0.7
$$

8. Calculate the average speed, in m.p.h., of a car that travels 63 miles in one and a half hours.

$$
\text { Speed }=\frac{\text { dit }}{\text { tine }}=\frac{63}{1.5}
$$

\qquad
\qquad

10. (a) Solve

$$
\begin{aligned}
& 5 x=9 \\
& x=\frac{9}{5}
\end{aligned}
$$

$5 x-2=7$.
\qquad
(b) Expand and simplify

$$
\begin{aligned}
& 10 x+12^{2(5 x+6)+3(x-2)} \\
& 13 x+6
\end{aligned}
$$

(c) Simplify

$$
m^{3} \times m^{7}
$$

- M^{10}
(d) Solve

$$
\begin{aligned}
& 25+x=20^{\frac{25+x}{2}=20} \\
& x=20-25 \\
& x=-5
\end{aligned}
$$

11. A prism has a uniform cross-section in the shape of a triangle $F G H$, in which $F G=5.1 \mathrm{~cm}$, $G H=6.8 \mathrm{~cm}$ and $F \hat{G H}=90^{\circ}$. The length of the prism is 3.7 cm .

Diagram not drawn to scale.
(a) Calculate the volume of the prism.

Area of cons section $=\frac{1}{2} \times 6.8 \times 5.1=17.34 \mathrm{~cm}^{2}$
Volume of prim $=17.34 \times 3.7=64.158 \mathrm{~cm}^{3}$
\qquad
\qquad
(b) The material from which the prism is made has a density of $3.9 \mathrm{~g} / \mathrm{cm}^{3}$. Find the mass of the prism in kilograms.

$$
D=\frac{M}{V}
$$

$$
\begin{align*}
M & =D \times V \\
& =3.9 \times 64.158 \\
& =250.2162 \mathrm{~g} \tag{3}\\
& =0.25 \mathrm{~kg}
\end{align*}
$$

12. A solution to the equation

$$
x^{3}+x=45
$$

lies between 3.4 and 3.5 .
Use the method of trial and improvement to find this solution correct to 2 decimal places.

$x=3.45$	44.5 loo small
$x=3.47$	45.25 loo ho
$x=3.46$	44.88 loosmal

So x leo belwer 3.46×3.47
tot bung $x=3.465 \quad 45.07$ too by
\qquad
\qquad
\qquad
\qquad
\qquad
13. The heights of 50 pupils were measured to the nearest centimetre. The table shows a grouped frequency distribution of the heights.

Height of pupil $(h$ centimetres $)$	Number of pupils
$140 \leqslant h \leqslant 149$	10
$150 \leqslant h \leqslant 159$	25
$160 \leqslant h \leqslant 169$	15

Find an estimate for the mean height of these pupils.
\qquad
Must $144.5 \times 10 ; 1445$
14. Name the following shapes from the descriptions given.
(a) A quadrilateral with only 1 pair of parallel sides.

Trepesion
(b) A quadrilateral with 4 lines of symmetry.
(c) A regular polygon with rotational symmetry of order 5 .
15. Rodney goes through two sets of traffic lights on his way to work. The probability that he has to stop at the first set of traffic lights is 0.6 . The probability that he has to stop at the second set of traffic lights is 0.3 .
(a) Complete the following tree diagram.

First set of traffic lights
Second set of traffic lights

(b) Calculate the probability that Rodney does not have to stop at either set of lights.
\qquad
$.4 \times 0.7=0.28$
\qquad
\qquad
16. (a) Write each of the following numbers in standard form.
(i) 0.00073

$$
7.3 \times 10^{-4}
$$

(ii) 8200000

$$
8.2 \times 10^{7}
$$

(b) Find, in standard form, the value of:

$$
\frac{4 \cdot 7 \times 10^{18}}{8 \cdot 9 \times 10^{3}}
$$

\qquad
17. (a) The triangle $P Q R$ is a right-angled triangle with $P \widehat{Q} R=90^{\circ}$. The length $Q R=6.8 \mathrm{~cm}$ and the length $P R=14.2 \mathrm{~cm}$.

Diagram not drawn to scale.
Calculate the size of the angle $\widehat{Q P R}$ which is denoted by \boldsymbol{x}.

(b) The triangle $K L M$ is a right-angled triangle with $\widehat{K L M}=90^{\circ}$. The length $K M=5 \cdot 2 \mathrm{~cm}$ and $L \widehat{K} M=42^{\circ}$.

Diagram not drawn to scale.
Calculate the length of $K L$ which is denoted by y.
\qquad
adj $=\cos 42 \times h_{y p}$

$$
y=\cot 42 \times 5.2=3.9 \mathrm{~cm}
$$

18. Solve the inequality

$$
\begin{gathered}
6 x-2 x>1165^{6 x-5 x+11} \\
4 x>16 \\
x>\frac{16}{4} \\
x>4
\end{gathered}
$$

19. (a) Factorise $4 x^{2}-8 x y$.

$$
4 x(x-2 y)
$$

\qquad
\qquad
(b) Simplify $\left.\sqrt{x^{8}} \cdot()^{8}\right)^{\frac{1}{2}}=x^{4}$
\qquad
(c) Simplify $\left(x^{6}\right)^{\frac{1}{3}} \cdot C^{2}$
20. Factorise the expression $12 x^{2}+17 x+6$. Hence solve the equation $12 x^{2}+17 x+6=0$.

$$
\begin{gathered}
\text { (72) } 9,8 \\
12 x^{2}+9 x+8,+6 \\
3 x(4 x+3)+2(4 x+3) \\
(3 x+2)(4 x+3)=0
\end{gathered}
$$

$$
\text { eth } 3 x+2=0 \text { of } 4 x+3=0
$$

$$
\begin{equation*}
x=-\frac{2}{3} \quad x=-\frac{3}{4} \tag{3}
\end{equation*}
$$

21. Use the formula method to solve the equation $2 x^{2}+32 x+13=0$, giving the solutions correct to two decimal places.

$$
\begin{aligned}
& a=2 \quad b=32 \quad c=13 \\
& x=\frac{-32 \pm \sqrt{32^{2}-4 \times 2 \times 13}}{2 \times 2} \\
& x=\frac{-32 \pm}{} \frac{\sqrt{1024-104}}{4}
\end{aligned}
$$

$$
x=\frac{-32 \pm \sqrt{920}}{4}
$$

lite $x=-\frac{32+\sqrt{920}}{4}=-0.42$

$$
\begin{equation*}
\text { or } x=\frac{-32-\sqrt{920}}{4}=-15.58 \tag{3}
\end{equation*}
$$

22. Make g the subject of the following formula.

$$
4 d y+12 g=3 g+5^{48}
$$

$$
4 d(g+3)=3 g+5
$$

$$
4 d g-3 g=5-12 d
$$

$$
g(4 d-3)=5-12 d
$$

$$
g=\frac{5-12 d}{4 d-3}
$$

Make sure that you clearly indicate the region that represents your answer.

$$
x+y=7 \quad \text { what } x=0 \quad y=7 \quad(0,7)
$$

$$
y=0 \quad x=7 \quad(7,0)
$$

$y=5 x+2 \quad$ whee $x=y=2 \quad(0,2)$

$$
x=2 y=5 \times 2+2=12(2,12)
$$

24. Using the axes below, sketch the graph of $y=\cos x$ for values of x from -180° to 180°.

25. The diagram shows triangle $A B C$.

Diagram not drawn to scale.
Given that $A B=8.5 \mathrm{~cm}, A C=6.9 \mathrm{~cm}$ and $B C=7.3 \mathrm{~cm}$, calculate $\widehat{C B A}$.

$$
\begin{aligned}
b^{2} & =a^{2}+c^{2}-2 a c \operatorname{Cos} B \\
2 a c \operatorname{Cos} B & =a^{2}+c^{2}-b^{2} \\
\operatorname{Cos} B & =\frac{a^{2}+c^{2}-b^{2}}{2 a c} \\
\operatorname{Con} B & =\frac{7.3^{2}+8.5^{2}-6 \cdot 9^{2}}{2 \times 7.3 \times 8 \cdot 5} \\
\operatorname{Con} B & =0.630 \\
B & =\operatorname{Cos}^{-1}(0.630) \\
& =51.1^{\circ}
\end{aligned}
$$

26. Vectors $O P, O Q$ and $O R$ are shown in the diagram below.

Diagram not drawn to scale.
You are given that $\mathbf{O P}=5 \mathbf{a}+4 \mathbf{b}$ and $\mathbf{O R}=\mathbf{a}+20 \mathbf{b}$.

$$
\begin{aligned}
& \begin{array}{l}
(a) \\
\overrightarrow{P R}=-\overrightarrow{O P}+\overrightarrow{O R}
\end{array}=-5 a-4 b+a+20 b \\
&=-4 a+16 b
\end{aligned}
$$

(b) Express RP in terms of \mathbf{a} and \mathbf{b} in its simplest form.

$$
\begin{align*}
& \overrightarrow{R P}=-\overrightarrow{O R}+\overrightarrow{O P}=-a-2 a b+5 a+4 b \tag{1}\\
& =4 a-16 b \tag{1}
\end{align*}
$$

(c) Given that $P Q=-\mathbf{a}+4 \mathbf{b}$, what can you say about the lines $P Q$ and $P R$?

$$
R P=4(a-4 b)
$$

They ave parallel, RP $=4$ kines as log
27. The data in the table was recorded during an experiment. Results were recorded for the two variables x and y.

x^{2}	1	4	7	16	$2)$
x	1	2	3	4	5
y	39.1	35.9	$31 \cdot 0$	24.2	14.8

(a) On the graph paper, plot the value of y against the value of x^{2}.

Before starting the experiment it was already known that y is approximately equal to $a x^{2}+b$. From the intersection of the graph with the y axis it is found that $b \approx 40$.
(b) Use your graph to estimate the gradient a.

$$
y=a x^{2}+40
$$

who $x=3 \quad y=31$

$$
31=9 a+40 \quad 9 a=-9 \quad a=-1
$$

(c) Hence write down the approximate equation for y in terms of x^{2}.

$$
y=-x^{2}+40
$$

(a) On the graph plot value of y against the value of x^{2}.

\qquad
\qquad

