Mark Scheme January 2009

GCE

GCE Mathematics (8371/8373,9371/9373)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

January 2009
Publications Code UA020941
All the material in this publication is copyright © Edexcel Ltd 2009

Contents

1. 6663 Core Mathematics 1 5
2. 6664 Core Mathematics 2 17
3. 6665 Core Mathematics 3 29
4. 6666 Core Mathematics 4 37
5. 6674 Further Pure Mathematics 1 (legacy) 47
6. 6667 Further Pure Mathematics 1 (new) 55
7. 6677 Mechanics 1 65
8. 6678 Mechanics 2 71
9. 6679 Mechanics 3 77
10. 6683 Statistics 1 83
11. 6684 Statistics 2 89
12. 6689 Decision Mathematics 1 97

6663 Core Mathematics C1

 Mark Scheme| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 1
 (a)
 (b) | 5
 (± 5 is B0) $\begin{aligned} \frac{1}{(\text { their } 5)^{2}} & \text { or }\left(\frac{1}{\text { their } 5}\right)^{2} \\ & =\frac{1}{25} \text { or } 0.04 \quad\left(\pm \frac{1}{25} \text { is } \mathrm{A} 0\right) \end{aligned}$ | B1
 (1)
 M1
 A1
 (2)
 [3] |
| (b) | M1 follow through their value of 5. Must have reciprocal and square. 5^{-2} is not sufficient to score this mark, unless $\frac{1}{5^{2}}$ follows this.
 A negative introduced at any stage can score the M1 but not the A1, e.g. $125^{-2 / 3}=\left(-\frac{1}{5}\right)^{2}=\frac{1}{25} \quad$ scores M1 A0 $125^{-2 / 3}=-\left(\frac{1}{5}\right)^{2}=-\frac{1}{25} \quad \text { scores M1 A0. }$
 Correct answer with no working scores both marks.
 Alternative: $\frac{1}{\sqrt[3]{125^{2}}}$ or $\frac{1}{\left(125^{2}\right)^{1 / 3}}$ M1 (reciprocal and the correct number squared) $\begin{aligned} (& \left.=\frac{1}{\sqrt[3]{15625}}\right) \\ & =\frac{1}{25} \quad \text { A1 } \end{aligned}$ | |

Question Number	Scheme	Marks
2	$\begin{aligned} & (I=) \frac{12}{6} x^{6}-\frac{8}{4} x^{4}+3 x+c \\ & =2 x^{6}-2 x^{4}+3 x+c \end{aligned}$	M1 A1A1A1 [4]
	M1 for an attempt to integrate $x^{n} \rightarrow x^{n+1}$ (i.e. $a x^{6}$ or $a x^{4}$ or $a x$, where a is any non-zero constant). Also, this M mark can be scored for just the $+c$ (seen at some stage), even if no other terms are correct. $1^{\text {st }}$ A1 for $2 x^{6}$ $2^{\text {nd }}$ A1 for $-2 x^{4}$ $3^{\text {rd }} \mathrm{A} 1$ for $3 x+c$ (or $3 x+k$, etc., any appropriate letter can be used as the constant) Allow $3 x^{1}+c$, but not $\frac{3 x^{1}}{1}+c$. Note that the A marks can be awarded at separate stages, e.g. $\begin{array}{ll} \frac{12}{6} x^{6}-2 x^{4}+3 x & \text { scores } 2^{\text {nd }} \mathrm{A} 1 \\ \frac{12}{6} x^{6}-2 x^{4}+3 x+c & \text { scores } 3^{\text {rd }} \mathrm{A} 1 \\ 2 x^{6}-2 x^{4}+3 x & \text { scores } 1^{\text {st }} \mathrm{A} 1 \text { (even though the } c \text { has now been lost). } \end{array}$ Remember that all the A marks are dependent on the M mark. If applicable, isw (ignore subsequent working) after a correct answer is seen. Ignore wrong notation if the intention is clear, e.g. Answer $\int 2 x^{6}-2 x^{4}+3 x+c \mathrm{~d} x$.	

Question Number	Scheme	Marks
3	$\sqrt{7}^{2}+2 \sqrt{7}-2 \sqrt{7}-2^{2}$, or $7-4$ or an exact equivalent such as $\sqrt{49}-2^{2}$ $=3$	M1 A1 [2]
	M1 for an expanded expression. At worst, there can be one wrong term and one wrong sign, or two wrong signs. $\begin{aligned} & \text { e.g. } 7+2 \sqrt{7}-2 \sqrt{7}-2 \text { is M1 (one wrong term }-2 \text {) } \\ & 7+2 \sqrt{7}+2 \sqrt{7}+4 \text { is M1 (two wrong signs }+2 \sqrt{7} \text { and }+4 \text {) } \\ & 7+2 \sqrt{7}+2 \sqrt{7}+2 \text { is M1 (one wrong term }+2 \text {, one wrong sign }+2 \sqrt{7} \text {) } \\ & \sqrt{7}+2 \sqrt{7}-2 \sqrt{7}+4 \text { is M1 (one wrong term } \sqrt{7} \text {, one wrong sign }+4 \text {) } \\ & \sqrt{7}+2 \sqrt{7}-2 \sqrt{7}-2 \text { is M0 (two wrong terms } \sqrt{7} \text { and }-2 \text {) } \\ & 7+\sqrt{14}-\sqrt{14}-4 \text { is M0 (two wrong terms } \sqrt{14} \text { and }-\sqrt{14} \text {) } \end{aligned}$ If only 2 terms are given, they must be correct, i.e. $(7-4)$ or an equivalent unsimplified version to score M1. The terms can be seen separately for the M1. Correct answer with no working scores both marks.	

Question Number	Scheme	Marks
4	$\begin{aligned} (\mathrm{f}(x) & =) \frac{3 x^{3}}{3}-\frac{3 x^{\frac{3}{2}}}{\frac{3}{2}}-7 x(+c) \\ & =x^{3}-2 x^{\frac{3}{2}}-7 x \quad(+c) \\ \mathrm{f}(4) & =22 \Rightarrow 22=64-16-28+c \\ c & \Rightarrow \mathbf{2} \end{aligned}$	M1 A1A1 M1 A1cso (5) [5]
	$1^{\text {st }}$ M1 for an attempt to integrate (x^{3} or $x^{\frac{3}{2}}$ seen). The x term is insufficient for this mark and similarly the $+c$ is insufficient. $1^{\text {st }}$ A1 for $\frac{3}{3} x^{3}$ or $-\frac{3 x^{\frac{3}{2}}}{\frac{3}{2}}$ (An unsimplified or simplified correct form) $2^{\text {nd }}$ A1 for all three x terms correct and simplified... (the simplification may be seen later). The $+c$ is not required for this mark. Allow $-7 x^{1}$, but not $-\frac{7 x^{1}}{1}$. $2^{\text {nd }}$ M1 for an attempt to use $x=4$ and $y=22$ in a changed function (even if differentiated) to form an equation in c. $3^{\text {rd }}$ A1 for $c=2$ with no earlier incorrect work (a final expression for $\mathrm{f}(x)$ is not required).	

Question Number	Scheme	Marks
5 (a) (b)		M1 A1 A1 (3) B1 B1 B1 (3) [6]
(a) (b)	M1 as described above. Be generous, even when the curve seems to be composed of straight line segments, but there must be a discernible 'curve' at the max. and min. $1^{\text {st }} \mathrm{A} 1$ for curve passing through -3 and the origin. Max at $(-3,0)$ $2^{\text {nd }}$ A1 for minimum at $(-1,-1)$. Can simply be indicated on sketch. $1^{\text {st }} \mathrm{B} 1$ for the correct shape. A negative cubic passing from top left to bottom right. Shape: Be generous, even when the curve seems to be composed of straight line segments, but there must be a discernible 'curve' at the max. and min. $2^{\text {nd }}$ B1 for curve passing through $(-3,0)$ having a max at $(0,0)$ and no other max. $3^{\text {rd }} \mathrm{B} 1$ for minimum at $(-2,-1)$ and no other minimum. If in correct quadrant but labelled, e.g. $(-2,1)$, this is B0. In each part the $(0,0)$ does not need to be written to score the second mark... having the curve pass through the origin is sufficient. The last mark (for the minimum) in each part is dependent on a sketch being attempted, and the sketch must show the minimum in approximately the correct place (not, for example, $(-2,-1)$ marked in the wrong quadrant). The mark for the minimum is not given for the coordinates just marked on the axes unless these are clearly linked to the minimum by vertical and horizontal lines.	

Question Number	Scheme	Marks
6 (a) (b)	$\begin{aligned} & 2 x^{3 / 2} \quad \text { or } p=\frac{3}{2} \quad \text { (Not } 2 x \sqrt{x} \text {) } \\ & -x \text { or }-x^{1} \text { or } q=1 \\ & \left(\frac{\mathrm{~d} y}{\mathrm{~d} x}=\right) 20 x^{3}+2 \times \frac{3}{2} x^{1 / 2}-1 \\ & \quad=20 x^{3}+3 x^{\frac{1}{2}}-1 \end{aligned}$	B1 B1 (2) M1 A1A1ftA1ft (4) [6]
(a) (b)	$1^{\text {st }} \mathrm{B} 1 \quad$ for $p=1.5$ or exact equivalent $2^{\text {nd }} \mathrm{B} 1$ for $q=1$ M1 for an attempt to differentiate $x^{n} \rightarrow x^{n-1}$ (for any of the 4 terms) $1^{\text {st }} \mathrm{A} 1$ for $20 x^{3}$ (the -3 must 'disappear') $2^{\text {nd }}$ A1ft for $3 x^{\frac{1}{2}}$ or $3 \sqrt{x}$. Follow through their p but they must be differentiating $2 x^{p}$, where p is a fraction, and the coefficient must be simplified if necessary. $3^{\text {rd }}$ A1ft for -1 (not the unsimplified $-x^{0}$), or follow through for correct differentiation of their $-x^{q}$ (i.e. coefficient of x^{q} is -1). If ft is applied, the coefficient must be simplified if necessary. 'Simplified' coefficient means $\frac{a}{b}$ where a and b are integers with no common factors. Only a single + or - sign is allowed (e.g. -- must be replaced by +). If there is a 'restart' in part (b) it can be marked independently of part (a), but marks for part (a) cannot be scored for work seen in (b). Multiplying by \sqrt{x} : (assuming this is a restart) e.g. $y=5 x^{4} \sqrt{x}-3 \sqrt{x}+2 x^{2}-x^{3 / 2}$ $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) \frac{45}{2} x^{7 / 2}-\frac{3}{2} x^{-1 / 2}+4 x-\frac{3}{2} x^{1 / 2} \text { scores M1 A0 A0 (} p \text { not a fraction) A1ft. }$ Extra term included: This invalidates the final mark. $\begin{aligned} & \text { e.g. } y=5 x^{4}-3+2 x^{2}-x^{3 / 2}-x^{1 / 2} \\ & \quad\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}=\right) 20 x^{3}+4 x-\frac{3}{2} x^{1 / 2}-\frac{1}{2} x^{-1 / 2} \text { scores M1 A1 A0 (} p \text { not a fraction) A0. } \end{aligned}$ Numerator and denominator differentiated separately: For this, neither of the last two (ft) marks should be awarded. Quotient/product rule: Last two terms must be correct to score the last 2 marks. (If the M mark has not already been earned, it can be given for the quotient/product rule attempt.)	

Question Number	Scheme ${ }^{\text {a }}$ Marks
7 (a) (b)	
(a)	For this question, ignore (a) and (b) labels and award marks wherever correct work is seen. M1 for attempting to use the discriminant of the initial equation (>0 not required, but substitution of a, b and c in the correct formula is required). If the formula $b^{2}-4 a c$ is seen, at least 2 of a, b and c must be correct. If the formula $b^{2}-4 a c$ is not seen, all $3(a, b$ and $c)$ must be correct. This mark can still be scored if substitution in $b^{2}-4 a c$ is within the quadratic formula. This mark can also be scored by comparing b^{2} and $4 a c$ (with substitution). However, use of $b^{2}+4 a c$ is M0. $1^{\text {st }}$ A1 for fully correct expression, possibly unsimplified, with $>$ symbol. NB must appear before the last line, even if this is simply in a statement such as $b^{2}-4 a c>0$ or 'discriminant positive'. Condone a bracketing slip, e.g. $16-4 \times k \times 5-k$ if subsequent work is correct and convincing. $2^{\text {nd }} \mathrm{A} 1$ for a fully correct derivation with no incorrect working seen. Condone a bracketing slip if otherwise correct and convincing. Using $\sqrt{b^{2}-4 a c}>0$: Only available mark is the first M1 (unless recovery is seen). $1^{\text {st }} \mathrm{M} 1$ for attempt to solve an appropriate 3 TQ $1^{\text {st }} \mathrm{A} 1$ for both $k=1$ and 4 (only the critical values are required, so accept, e.g. $k>1$ and $k>4$). $2^{\text {nd }}$ M1 for choosing the "outside" region. A diagram or table alone is not sufficient. Follow through their values of k. The set of values must be 'narrowed down' to score this M mark... listing everything $k<1,1<k<4, k>4$ is M0. $2^{\text {nd }}$ A1 for correct answer only, condone " $k<1, k>4$ " and even " $k<1$ and $k>4$ ", but " $1>k>4$ " is A0. Often the statement $k>1$ and $k>4$ is followed by the correct final answer. Allow full marks. Seeing 1 and 4 used as critical values gives the first M1 A1 by implication. In part (b), condone working with x 's except for the final mark, where the set of values must be a set of values of k (i.e. 3 marks out of 4). Use of \leq (or \geq) in the final answer loses the final mark.

Question Number	Scheme Marks
8 (a) (b) (c)	
(b)	$1^{\text {st } \mathrm{B} 1}$ for shape $\bigvee_{\text {or }} \sim$ Can be anywhere, but there must be one max. and one min. and no further max. and min. turning points. Shape: Be generous, even when the curve seems to be composed of straight line segments, but there must be a discernible 'curve' at the max. and min. $2^{\text {nd }} \mathrm{B} 1$ for minimum at $(-1,0)$ (even if there is an additional minimum point shown) $3^{\text {rd }} \mathrm{B} 1$ for the sketch meeting axes at $(2,0)$ and $(0,2)$. They can simply mark 2 on the axes. The marks for minimum and intersections are dependent upon having a sketch. Answers on the diagram for min. and intersections take precedence over answers seen elsewhere. $4^{\text {th }}$ B1 for the branch fully within $1^{\text {st }}$ quadrant having 2 intersections with (not just 'touching') the other curve. The curve can 'touch' the axes. A curve of (roughly) the correct shape is required, but be very generous, even when the arc appears to turn 'inwards' rather than approaching the axes, and when the curve looks like two straight lines with a small curve at the join. Allow, for example, shapes like these: $5^{\text {th }} \mathrm{B} 1$ for a branch fully in the $3^{\text {rd }}$ quadrant (ignore any intersections with the other curve for this branch). The curve can 'touch' the axes. A curve of (roughly) the correct shape is required, but be very generous, even when the arc appears to turn 'inwards' rather than approaching the axes. B1ft for a statement about the number of roots - compatible with their sketch. No sketch is B0. The answer 2 incompatible with the sketch is B 0 (ignore any algebra seen). If the sketch shows the 2 correct intersections and, for example, one other intersection, the answer here should be 3 , not 2 , to score the mark.

Mark parts (a) and (b) as 'one part', ignoring labelling.
(a) Alternative:
$1^{\text {st }} \mathrm{B} 1: d=2.5$ or equiv.or $d=\frac{32.5-25}{3}$. No method required, but $a=-17.5$ must not be assumed.
$2^{\text {nd }}$ B1: Either $a+17 d=25$ or $a+20 d=32.5$ seen, or used with a value of $d \ldots$
(b) or for 'listing terms' or similar methods, 'counting back' 17 (or 20) terms.

M1: In main scheme: for a full method (allow numerical or sign slips) leading to solution for d or a without assuming $a=-17.5$
In alternative scheme: for using a d value to find a value for a.
A1: Finding correct values for both a and d (allowing equiv. fractions such as $d=\frac{15}{6}$), with no incorrect working seen.

In the main scheme, if the given a is used to find d from one of the equations, then allow M1A1 if both values are checked in the $2^{\text {nd }}$ equation.
$1^{\text {st }}$ M1 for attempt to form equation with correct S_{n} formula and 2750, with values of a and d.
$1^{\text {st }} \mathrm{A} 1 \mathrm{ft}$ for a correct equation following through their d.
$2^{\text {nd }} \mathrm{M} 1$ for expanding and simplifying to a 3 term quadratic.
(d) $2^{\text {nd }} \mathrm{A} 1$ for correct working leading to printed result (no incorrect working seen).
$1^{\text {st }} \mathrm{M} 1$ forming the correct $3 \mathrm{TQ}=0$. Can condone missing " $=0$ " but all terms must be on one side. First M1 can be implied (perhaps seen in (c), but there must be an attempt at (d) for it to be scored). $2^{\text {nd }} \mathrm{M} 1$ for attempt to solve 3TQ, by factorisation, formula or completing the square (see general marking principles at end of scheme). If this mark is earned for the 'completing the square' method or if the factors are written down directly, the $1^{\text {st }} \mathrm{M} 1$ is given by implication.
A1 for $n=55$ dependent on both Ms. Ignore -40 if seen.
No working or 'trial and improvement' methods in (d) score all 3 marks for the answer 55, otherwise no marks.

Question Number	Scheme	Marks
(a) (b) (c) (d)	$y-5=-\frac{1}{2}(x-2) \quad$ or equivalent, e.g. $\frac{y-5}{x-2}=-\frac{1}{2}, \quad y=-\frac{1}{2} x+6$ $x=-2 \Rightarrow y=-\frac{1}{2}(-2)+6=7$ (therefore B lies on the line) (or equivalent verification methods) $\left(A B^{2}=\right)(2--2)^{2}+(7-5)^{2}, \quad=16+4=20, \quad A B=\sqrt{20}=2 \sqrt{5}$ C is $\left(p,-\frac{1}{2} p+6\right)$, so $A C^{2}=(p-2)^{2}+\left(-\frac{1}{2} p+6-5\right)^{2}$ Therefore $\quad 25=p^{2}-4 p+4+\frac{1}{4} p^{2}-p+1$ $25=1.25 p^{2}-5 p+5$ or $100=5 p^{2}-20 p+20$ (or better, RHS simplified to 3 terms) Leading to: $\quad 0=p^{2}-4 p-16$	M1A1, A1cao B1 (1) M1, A1, A1 (3) M1 M1 A1 A1cso (4) [11]
(a) (b) (c) (d)	M1 A1 The version in the scheme above can be written down directly (for 2 marks), and M1 A0 can be allowed if there is just one slip (sign or number). If the 5 and 2 are the wrong way round the M mark can still be given if a correct formula (e.g. $y-y_{1}=m\left(x-x_{1}\right)$) is seen, otherwise M0. If $(2,5)$ is substituted into $y=m x+c$ to find c, the M mark is for attempting this and the $1^{\text {st }} \mathrm{A}$ mark is for $c=6$. Correct answer without working or from a sketch scores full marks. A conclusion/comment is not required, except when the method used is to establish that the line through $(-2,7)$ with gradient $-\frac{1}{2}$ has the same eqn. as found in part (a), or to establish that the line through $(-2,7)$ and $(2,5)$ has gradient $-\frac{1}{2}$. In these cases a comment 'same equation' or 'same gradient' or 'therefore on same line' is sufficient. M1 for attempting $A B^{2}$ or $A B$. Allow one slip (sign or number) inside a bracket, i.e. do not allow $(2--2)^{2}-(7-5)^{2}$. $1^{\text {st }} \mathrm{A} 1$ for 20 (condone bracketing slips such as $-2^{2}=4$) $2^{\text {nd }} \mathrm{A} 1$ for $2 \sqrt{5}$ or $k=2$ (Ignore \pm here). $1^{\text {st }}$ M1 for $(p-2)^{2}+(\text { linear function of } p)^{2}$. The linear function may be unsimplified but must be equivalent to $a p+b, a \neq 0, b \neq 0$. $2^{\text {nd }} \mathrm{M} 1$ (dependent on $1^{\text {st }} \mathrm{M}$) for forming an equation in p (using 25 or 5) and attempting (perhaps not very well) to multiply out both brackets. $1^{\text {st }} \mathrm{A} 1$ for collecting like p terms and having a correct expression. $2^{\text {nd }} \mathrm{A} 1$ for correct work leading to printed answer. Alternative, using the result: Solve the quadratic $(p=2 \pm 2 \sqrt{5})$ and use one or both of the two solutions to find the length of $A C^{2}$ or $C_{1} C_{2}^{2}$: e.g. $A C^{2}=(2+2 \sqrt{5}-2)^{2}+(5-\sqrt{5}-5)^{2}$ scores $1^{\text {st }} \mathrm{M} 1$, and $1^{\text {st }} \mathrm{A} 1$ if fully correct. Finding the length of $A C$ or $A C^{2}$ for both values of p, or finding $C_{1} C_{2}$ with some evidence of halving (or intending to halve) scores the $2^{\text {nd }} \mathrm{M} 1$. Getting $A C=5$ for both values of p, or showing $\frac{1}{2} C_{1} C_{2}=5$ scores the $2^{\text {nd }} \mathrm{A} 1$ (cso).	

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme \({ }^{\text {a }}\) Marks \\
\hline \begin{tabular}{l}
11 (a) \\
(b) \\
(c)
\end{tabular} \& \\
\hline (a)
(b)

(c) \& | $1^{\text {st }} \mathrm{M} 1$ for 4 or $8 x^{-2}$ (ignore the signs). |
| :--- |
| $1^{\text {st }} \mathrm{A} 1$ for both terms correct (including signs). |
| $2^{\text {nd }}$ M1 for substituting $x=2$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ (must be different from their y) |
| B1 for $y_{P}=-3$, but not if clearly found from the given equation of the tangent. |
| $3^{\text {rd }} \mathrm{M} 1$ for attempt to find the equation of tangent at P, follow through their m and y_{P}. |
| Apply general principles for straight line equations (see end of scheme). |
| NO DIFFERENTIATION ATTEMPTED: Just assuming $m=-2$ at this stage is M0 |
| $2^{\text {nd }}$ A1cso for correct work leading to printed answer (allow equivalents with $2 x, y$, and 1 terms... such as $2 x+y-1=0)$. |
| B1ft for correct use of the perpendicular gradient rule. Follow through their m, but if $m \neq-2$ there must be clear evidence that the m is thought to be the gradient of the tangent. |
| M1 for an attempt to find normal at P using their changed gradient and their y_{P}. |
| Apply general principles for straight line equations (see end of scheme). |
| A1 for any correct form as specified above (correct answer only). |
| $1^{\text {st }} \mathrm{B} 1$ for $\frac{1}{2}$ and $2^{\text {nd }} \mathrm{B} 1$ for 8 . |
| M1 for a full method for the area of triangle $A B P$. Follow through their x_{A}, x_{B} and their y_{P}, but the mark is to be awarded 'generously', condoning sign errors.. |
| The final answer must be positive for A1, with negatives in the working condoned. |
| Determinant: Area $=\frac{1}{2}\left\|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right\|=\frac{1}{2}\left\|\begin{array}{ccc}2 & -3 & 1 \\ 0.5 & 0 & 1 \\ 8 & 0 & 1\end{array}\right\|=\ldots$ (Attempt to multiply out required for M1) |
| Alternative: $A P=\sqrt{(2-0.5)^{2}+(-3)^{2}}, B P=\sqrt{(2-8)^{2}+(-3)^{2}}$, Area $=\frac{1}{2} A P \times B P=\ldots$ |
| Intersections with y-axis instead of x-axis: Only the M mark is available B0 B0 M1 A0. |

\hline
\end{tabular}

January 2009
6664 Core Mathematics C2
Mark Scheme

Question Number	Scheme ${ }^{\text {a }}$ Marks
1	$\begin{aligned} & (3-2 x)^{5}=243, \quad \ldots \ldots+5 \times(3)^{4}(-2 x)=-810 x \quad \ldots \ldots \\ & +\frac{5 \times 4}{2}(3)^{3}(-2 x)^{2}=\quad+1080 x^{2} \end{aligned}$ B1, B1
Notes	First term must be 243 for B1, writing just 3^{5} is B0 (Mark their final answers except in second line of special cases below). Term must be simplified to $-810 x$ for $\mathbf{B 1}$ The x is required for this mark. The method mark (M1) is generous and is awarded for an attempt at Binomial to get the third term. There must be an x^{2} (or no x - i.e. not wrong power) and attempt at Binomial Coefficient and at dealing with powers of 3 and 2 . The power of 3 should not be one, but the power of 2 may be one (regarded as bracketing slip). So allow $\binom{5}{2}$ or $\binom{5}{3}$ or ${ }^{5} C_{2}$ or ${ }^{5} C_{3}$ or even $\left(\frac{5}{2}\right)$ or $\left(\frac{5}{3}\right)$ or use of ' 10 ' (maybe from Pascal's triangle) May see ${ }^{5} C_{2}(3)^{3}(-2 x)^{2}$ or ${ }^{5} C_{2}(3)^{3}\left(-2 x^{2}\right)$ or ${ }^{5} C_{2}(3)^{5}\left(-\frac{2}{3} x^{2}\right)$ or $10(3)^{3}(2 x)^{2}$ which would each score the M1 A1is c.a.o and needs $1080 x^{2}$ (if $1080 x^{2}$ is written with no working this is awarded both marks i.e. M1 A1.)
Special cases	$243+810 x+1080 x^{2}$ is B1B0M1A1 (condone no negative signs) Follows correct answer with $27-90 x+120 x^{2}$ can isw here (sp case)- full marks for correct answer Misreads ascending and gives $-32 x^{5}+240 x^{4}-720 x^{3}$ is marked as B1B0M1A0 special case and must be completely correct. (If any slips could get B0B0M1A0) Ignores 3 and expands $(1 \pm 2 x)^{5}$ is $\mathbf{0 / 4}$ $243,-810 x, 1080 x^{2}$ is full marks but $243,-810,1080$ is B1,B0,M1,A0 NB Alternative method $3^{5}\left(1-\frac{2}{3} x\right)^{5}=3^{5}-5 \times 3^{5} \times\left(\frac{2}{3} x\right)+\binom{5}{3} 3^{5}\left(-\frac{2}{3} x\right)^{2}+$.. is B0B0M1A0 - answers must be simplified to $243-810 x+1080 x^{2}$ for full marks (awarded as before) Special case $3\left(1-\frac{2}{3} x\right)^{5}=3-5 \times 3 \times\left(\frac{2}{3} x\right)+\binom{5}{3} 3\left(-\frac{2}{3} x\right)^{2}+.$. is B0, B0, M1, A0 Or $\quad 3(1-2 x)^{5}$ is B0B0M0A0

Question Number	Scheme Marks
2	$y=(1+x)(4-x)=4+3 x-x^{2}$ M: Expand, giving 3 (or 4) terms $\int\left(4+3 x-x^{2}\right) \mathrm{d} x=4 x+\frac{3 x^{2}}{2}-\frac{x^{3}}{3}$ M1 $=[\ldots \ldots \ldots \ldots . . .]_{-1}^{4}=\left(16+24-\frac{64}{3}\right)-\left(-4+\frac{3}{2}+\frac{1}{3}\right)=\frac{125}{6} \quad\left(=20 \frac{5}{6}\right)$ M: Attempt to integrate$\|$M1 A1 [5]
Notes	M1 needs expansion, there may be a slip involving a sign or simple arithmetical error e.g. $1 \times 4=5$, but there needs to be a 'constant' an ' x term' and an ' x^{2} term'. The x terms do not need to be collected. (Need not be seen if next line correct) Attempt to integrate means that $x^{n} \rightarrow x^{n+1}$ for at least one of the terms, then M1 is awarded (even 4 becoming $4 x$ is sufficient) - one correct power sufficient. A1 is for correct answer only, not follow through. But allow $2 x^{2}-\frac{1}{2} x^{2}$ or any correct equivalent. Allow $+\boldsymbol{c}$, and even allow an evaluated extra constant term. M1: Substitute limit 4 and limit -1 into a changed function (must be -1) and indicate subtraction (either way round). A1 must be exact, not 20.83 or similar. If recurring indicated can have the mark. Negative area, even if subsequently positive loses the A mark.
Special cases	(i) Uses calculator method: M1 for expansion (if seen) M1 for limits if answer correct, so 0,1 or 2 marks out of 5 is possible (Most likely M0 M0 A0 M1 A0) (ii) Uses trapezium rule : not exact, no calculus - $0 / 5$ unless expansion mark M1 gained. (iii) Using original method, but then change all signs after expansion is likely to lead to: M1 M1 A0, M1 A0 i.e. 3/5

Question Number	Scheme Marks
(a) (b)	$3.84,4.14,4.58$ (Any one correct B1 B0. All correct B1 B1) B1 B1 $\frac{1}{2} \times 0.4$, $\{(3+4.58)+2(3.47+3.84+4.14+4.39)\}$ $=7.852$ $($ awrt 7.9 $)$ B1, M1 A1ft A1 (4)
(a) (b)	B1 for one answer correct Second B1 for all three correct Accept awrt ones given or exact answers so $\sqrt{21}, \sqrt{\left(\frac{369}{25}\right)}$ or $\frac{3 \sqrt{41}}{5}$, and $\sqrt{\left(\frac{429}{25}\right)}$ or $\frac{\sqrt{429}}{5}$, score the marks. B1 is for using 0.2 or $\frac{0.4}{2}$ as $\frac{1}{2} h$. M1 requires first bracket to contain first plus last values and second bracket to include no additional values from those in the table. If the only mistake is to omit one value from $2^{\text {nd }}$ bracket this may be regarded as a slip ar can be allowed (An extra repeated term forfeits the \mathbf{M} mark however) x values: M0 if values used in brackets are x values instead of y values. Separate trapezia may be used : B1 for 0.2, M1 for $\frac{1}{2} h(a+b)$ used 4 or 5 times (and A1ft all e.g.. $0.2(3+3.47)+0.2(3.47+3.84)+0.2(3.84+4.14)+0.2(4.14+4.58)$ is M1 A0 equivalent to missing one term in $\}$ in main scheme A1ft follows their answers to part (a) and is for \{correct expression\} Final A1 must be correct. (No follow through) Bracketing mistake: i.e. $\frac{1}{2} \times 0.4(3+4.58)+2(3.47+3.84+4.14+4.39)$ scores B1 M1 A0 A0 unless the final answer implies that the calculation has been done correctly (then full marks can be given). Need to see trapezium rule - answer only (with no working) is $\mathbf{0} / 4$.

Question Number	Scheme	Marks
4	$\begin{array}{lc} 2 \log _{5} x=\log _{5}\left(x^{2}\right), & \log _{5}(4-x)-\log _{5}\left(x^{2}\right)=\log _{5} \frac{4-x}{x^{2}} \\ \log \left(\frac{4-x}{x^{2}}\right)=\log 5 & 5 x^{2}+x-4=0 \text { or } 5 x^{2}+x=4 \text { o.e. } \\ (5 x-4)(x+1)=0 & x=\frac{4}{5} \end{array} \quad(x=-1) \quad .$	B1, M1 M1 A1 dM1 A1 (6) [6]
Notes	B1 is awarded for $2 \log x=\log x^{2}$ anywhere. M1 for correct use of $\log A-\log B=\log \frac{A}{B}$ M1 for replacing 1 by $\log _{k} k . \quad \mathbf{A 1}$ for correct quadratic $\left(\log (4-x)-\log x^{2}=\log 5 \Rightarrow 4-x-x^{2}=5\right.$ is B1M0M1A0 M0A0) dM1 for attempt to solve quadratic with usual conventions. (Only award if previous two M marks have been awarded) A1 for $4 / 5$ or 0.8 or equivalent (Ignore extra answer).	
Alternative 1	$\begin{aligned} & \log _{5}(4-x)-1=2 \log _{5} x \text { so } \log _{5}(4-x)-\log _{5} 5=2 \log _{5} x \\ & \log _{5} \frac{4-x}{5}=2 \log _{5} x \end{aligned}$ then could complete solution with $2 \log _{5} x=\log _{5}\left(x^{2}\right)$ $\left(\frac{4-x}{5}\right)=x^{2} \quad 5 x^{2}+x-4=0$ Then as in first method $(5 x-4)(x+1)=0 \quad x=\frac{4}{5} \quad(x=-1)$	M1 M1 B1 A1 dM1 A1 (6) [6]
Special cases	Complete trial and error yielding 0.8 is M3 and B1 for 0.8 A1, A1 awarded for each of two tries evaluated. i.e. 6/6 Incomplete trial and error with wrong or no solution is $0 / 6$ Just answer 0.8 with no working is B1	

Question Number	Scheme	Marks
5 (a) $P Q: \quad m_{1}=\frac{10-2}{9-(-3)}\left(=\frac{2}{3}\right) \quad$ and $\quad Q R: m_{2}=\frac{10-4}{9-a}$		
(b) Alt for	$\begin{equation*} m_{1} m_{2}=-1: \quad \frac{8}{12} \times \frac{6}{9-a}=-1 \quad a=13 \tag{*} \end{equation*}$	M1 A1
Alt for (a)	$(9-(-3))^{2}+(10-2)^{2},\left(\text { i.e.208) }, \quad(9-a)^{2}+(10-4)^{2}, \quad(a-(-3))^{2}+(4-2)^{2}\right.$	M1
	Using Pythagoras (correct way around) e.g. $a^{2}+6 a+9=240+a^{2}-18 a+81$ to form equation Solve (or verify) for $a, a=13\left(^{*}\right)$ (b) Centre is at $(5,3)$	M1 A1 (3)
	$\begin{aligned} & \left(r^{2}=\right)(10-3)^{2}+(9-5)^{2} \text { or equiv., or }\left(d^{2}=\right)(13-(-3))^{2}+(4-2)^{2} \\ & (x-5)^{2}+(y-3)^{2}=65 \quad \text { or } x^{2}+y^{2}-10 x-6 y-31=0 \end{aligned}$	M1 A1 M1 A1
Alt for (b)	Uses $(x-a)^{2}+(y-b)^{2}=r^{2}$ or $x^{2}+y^{2}+2 g x+2 f y+c=0$ and substitutes $(-3,2),(9,10)$ and $(13,4)$ then eliminates one unknown Eliminates second unknown	M1 M1
	Obtains $g=-5, f=-3, c=-31$ or $\quad a=5, b=3, \quad r^{2}=65$	A1, A1, B1cao (5) [8]
Notes		
(a)	M1-considers gradients of $P Q$ and $Q R$-must be y difference $/ x$ difference (or considers three lengths as in alternative method) M1 Substitutes gradients into product $=-1$ (or lengths into Pythagoras' Theorem correct way round) A1 Obtains $a=13$ with no errors by solution or verification. Verification can sco	the re $3 / 3$.
(b)	Geometrical method: B1 for coordinates of centre - can be implied by use in part (b)	
	M1 for attempt to find r^{2}, d^{2}, r or d (allow one slip in a bracket).	
	A1 cao. These two marks may be gained implicitly from circle equation	
	M1 for $(x \pm 5)^{2}+(y \pm 3)^{2}=k^{2}$ or $(x \pm 3)^{2}+(y \pm 5)^{2}=k^{2}$ ft their $(5,3)$ Allow k^{2} non numerical.	
	A1 cao for whole equation and rhs must be 65 or $(\sqrt{65})^{2}$, (similarly B1 must be $(\sqrt{65})^{2}$, in alternative method for (b))	$65 \text { or }$

Question Number	Scheme	Marks
Further alternatives	(i) A number of methods find gradient of $\mathrm{PQ}=2 / 3$ then give perpendicular gradient is $-3 / 2$ This is M1 They then proceed using equations of lines through point Q or by using gradient $Q R$ to obtain equation such as $\frac{4-10}{a-9}=-\frac{3}{2} \mathbf{M 1}$ (may still have x in this equation rather than a and there may be a small slip) They then complete to give $(a)=13$ A1 (ii) A long involved method has been seen finding the coordinates of the centre of the circle first. This can be done by a variety of methods Giving centre as $(c, 3)$ and using an equation such as $(c-9)^{2}+7^{2}=(c+3)^{2}+1^{2}$ (equal radii) or $\frac{3-6}{c-3}=-\frac{3}{2}$ M1 (perpendicular from centre to chord bisects chord) Then using $c(=5)$ to find a is M1 Finally $a=13 \mathbf{A 1}$ (iii) Vector Method: States $\mathbf{P Q} . \mathbf{Q R}=0$, with vectors stated $12 \mathrm{i}+8 \mathrm{j}$ and $(9-a) \mathbf{i}+\mathbf{6 j}$ is $\mathbf{M 1}$ Evaluates scalar product so $108-12 a+48=0$ (M1) solves to give $a=13$ (A1)	M1 M1 A1 M1 M1 A1 M1 M1 A1

Question Number	Scheme Marks
7 (a)	$\frac{1}{2} r^{2} \theta=\frac{1}{2} \times 6^{2} \times 2.2=39.6 \quad\left(\mathrm{~cm}^{2}\right)$ $M 1 \mathrm{~A} 1$ (2) $\left(\frac{2 \pi-2.2}{2}=\right) \pi-1.1=2.04 \quad(\mathrm{rad})$ $M 1 \mathrm{~A} 1$ (2) (c) $\triangle D A C=\frac{1}{2} \times 6 \times 4 \sin 2.04 \quad(\approx 10.7)$ Total area $=$ sector +2 triangles $=61$ $\left(\mathrm{~cm}^{2}\right)$ $M 1 \mathrm{~A} 1 \mathrm{ft}$ M1 A1 (4)
(a) (b) (c)	M1: Needs θ in radians for this formula. Could convert to degrees and use degrees formula. A1: Does not need units. Answer should be 39.6 exactly. Answer with no working is M1 A1. This M1A1 can only be awarded in part (a). M1: Needs full method to give angle in radians A1: Allow answers which round to 2.04 (Just writes 2.04 - no working is $2 / 2$) M1: Use $\frac{1}{2} \times 6 \times 4 \sin A \quad$ (if any other triangle formula e.g. $\frac{1}{2} b \times h$ is used the method must be complete for this mark) (No value needed for A, but should not be using 2.2) A1: ft the value obtained in part (b) - need not be evaluated- could be in degrees M1: Uses Total area $=$ sector +2 triangles or other complete method A1: Allow answers which round to 61. (Do not need units) Special case degrees: Could get M0A0, M0A0, M1A1M1A0 Special case: Use $\triangle B D C-\triangle B A C$ Both areas needed for first M1 Total area $=$ sector + area found is second M1 NB Just finding lengths BD, DC, and angle BDC then assuming area BDC is a sector to find area BDC is $0 / 4$

Question Number	Scheme Marks
(a) (b) (c) (d)	Initial step: Two of: $a=k+4, a r=k, a r^{2}=2 k-15$ Or one of: $r=\frac{k}{k+4}, \quad r=\frac{2 k-15}{k}, \quad r^{2}=\frac{2 k-15}{k+4}$, Or $k=\sqrt{(k+4)(2 k-15)}$ or even $k^{3}=(k+4) k(2 k-15)$ $\begin{equation*} k^{2}=(k+4)(2 k-15), \text { so } k^{2}=2 k^{2}+8 k-15 k-60 \tag{*} \end{equation*}$ Proceed to $k^{2}-7 k-60=0$ $\begin{equation*} (k-12)(k+5)=0 \quad k=12 \tag{*} \end{equation*}$ Common ratio: $\frac{k}{k+4}$ or $\frac{2 k-15}{k}=\frac{12}{16}\left(=\frac{3}{4}\right.$ or 0.75$)$ $\begin{equation*} \frac{a}{1-r}=\frac{16}{(1 / 4)}=64 \tag{2} \end{equation*}$
(a) (b) (c) (d)	M1: The 'initial step', scoring the first M mark, may be implied by next line of proof M1: Eliminates a and r to give valid equation in k only. Can be awarded for equation involving fractions. A1 : need some correct expansion and working and answer equivalent to required quadratic but with uncollected terms. Equations involving fractions do not get this mark. (No fractions, no brackets - could be a cubic equation) A1: as answer is printed this mark is for cso (Needs $=0$) All four marks must be scored in part (a) M1: Attempt to solve quadratic A1: This is for correct factorisation or solution and $k=12$. Ignore the extra solution ($k=$ -5 or even $k=5$), if seen. Substitute and verify is M1 A0 Marks must be scored in part (b) M1: Complete method to find r Could have answer in terms of k A1: 0.75 or any correct equivalent Both Marks must be scored in (c) M1: Tries to use $\frac{a}{1-r}$, (even with $r>1$). Could have an answer still in terms of k. A1: This answer is 64 cao.

Question Number	Scheme ${ }^{\text {a }}$ Marks
(a) (b) (c)	
Other methods for part (c):	Either:M: Find value of $\frac{\mathrm{d} V}{\mathrm{~d} r}$ on each side of " $r=\sqrt{\frac{400}{3 \pi}}$ " and consider sign. A: Indicate sign change of positive to negative for $\frac{\mathrm{d} V}{\mathrm{~d} r}$, and conclude max. Or: M: Find value of V on each side of " $r=\sqrt{\frac{400}{3 \pi}}$ " and compare with " 1737 ". A: Indicate that both values are less than 1737 or 1737.25 , and conclude max.
Notes (a) (b)	B1: For any correct form of this equation (may be unsimplified, may be implied by $1^{\text {st }}$ M1) M1: Making h the subject of their three or four term formula M1: Substituting expression for h into $\pi r^{2} h$ (independent mark) Must now be expression in r only. A1: cso M1: At least one power of r decreased by 1 A1: cao M1: Setting $\frac{\mathrm{d} V}{\mathrm{~d} r}=0$ and finding a value for correct power of r for candidate A1 : This mark may be credited if the value of V is correct. Otherwise answers should round to 6.5 (allow ± 6.5) or be exact answer M1: Substitute a positive value of r to give V A1: 1737 or $1737.25 \ldots$. or exact answer

(c) M1: needs complete method e.g.attempts differentiation (power reduced) of their first derivative and considers its sign
A1(first method) should be $-6 \pi r$ (do not need to substitute r and can condone wrong r if found in (b))

Need to conclude maximum or indicate by a tick that it is maximum.
Throughout allow confused notation such as $\mathrm{d} y / \mathrm{d} x$ for $\mathrm{d} V / \mathrm{d} r$
Alternative
for (a)
$A=2 \pi r^{2}+2 \pi r h, \frac{A}{2} \times r=\pi r^{3}+\pi r^{2} h$ is M1 Equate to $400 r$ B1
Then $V=400 r-\pi r^{3}$ is M1 A1

January 2009
 6665 Core Mathematics C3 Mark Scheme

Question Number	Scheme	Marks
1 (a) (b)	$\begin{aligned} \begin{aligned} \frac{\mathrm{d}}{\mathrm{~d} x}(\sqrt{ }(5 x-1)) & =\frac{\mathrm{d}}{\mathrm{~d} x}\left((5 x-1)^{\frac{1}{2}}\right) \\ & =5 \times \frac{1}{2}(5 x-1)^{-\frac{1}{2}} \\ \frac{\mathrm{~d} y}{\mathrm{~d} x} & =2 x \sqrt{ }(5 x-1)+\frac{5}{2} x^{2}(5 x-1)^{-\frac{1}{2}} \\ \text { At } x=2, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x} & =4 \sqrt{ } 9+\frac{10}{\sqrt{ } 9}=12+\frac{10}{3} \\ & =\frac{46}{3} \quad \text { Accept awrt } 15.3 \\ \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{\sin 2 x}{x^{2}}\right) & =\frac{2 x^{2} \cos 2 x-2 x \sin 2 x}{x^{4}} \end{aligned} \end{aligned}$	M1 A1 M1 A1ft M1 A1 (6) $\mathrm{M} 1 \frac{\mathrm{~A} 1+\mathrm{A} 1}{\mathrm{~A} 1}$ (4) [10]
	Alternative to (b) $\begin{aligned} \frac{\mathrm{d}}{\mathrm{~d} x}\left(\sin 2 x \times x^{-2}\right) & =2 \cos 2 x \times x^{-2}+\sin 2 x \times(-2) x^{-3} \\ & =2 x^{-2} \cos 2 x-2 x^{-3} \sin 2 x \quad\left(=\frac{2 \cos 2 x}{x^{2}}-\frac{2 \sin 2 x}{x^{3}}\right) \end{aligned}$	M1 A1 + A1 A1 (4)

Question Number	Scheme	Marks
2 (a)	$\begin{aligned} & \frac{2 x+2}{x^{2}-2 x-3}-\frac{x+1}{x-3}=\frac{2 x+2}{(x-3)(x+1)}-\frac{x+1}{x-3} \\ &=\frac{2 x+2-(x+1)(x+1)}{(x-3)(x+1)} \\ &=\frac{(x+1)(1-x)}{(x-3)(x+1)} \\ &=\frac{1-x}{x-3} \quad \text { Accept }-\frac{x-1}{x-3}, \frac{x-1}{3-x} \\ & \begin{aligned} & \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{1-x}{x-3}\right)=\frac{(x-3)(-1)-(1-x) 1}{(x-3)^{2}} \\ &=\frac{-x+3-1+x}{(x-3)^{2}}=\frac{2}{(x-3)^{2}} \quad * \end{aligned} \quad \text { cso } \end{aligned}$	M1 A1 M1 A1 (4) M1 A1 A1 (3)
	Alternative to (a) $\begin{aligned} \frac{2 x+2}{x^{2}-2 x-3} & =\frac{2(x+1)}{(x-3)(x+1)}=\frac{2}{x-3} \\ \frac{2}{x-3}-\frac{x+1}{x-3} & =\frac{2-(x+1)}{x-3} \\ & =\frac{1-x}{x-3} \end{aligned}$ Alternatives to (b) (1) $\begin{aligned} \mathrm{f}(x) & =\frac{1-x}{x-3}=-1-\frac{2}{x-3}=-1-2(x-3)^{-1} \\ \mathrm{f}^{\prime}(x) & =(-1)(-2)(x-3)^{-2} \\ & =\frac{2}{(x-3)^{2}} \quad * \end{aligned}$ (2) $\begin{aligned} \mathrm{f}(x) & =(1-x)(x-3)^{-1} \\ \mathrm{f}^{\prime}(x) & =(-1)(x-3)^{-1}+(1-x)(-1)(x-3)^{-2} \\ & =-\frac{1}{x-3}-\frac{1-x}{(x-3)^{2}}=\frac{-(x-3)-(1-x)}{(x-3)^{2}} \\ & =\frac{2}{(x-3)^{2}} * \end{aligned}$	M1 A1 M1 A1 (4) M1 A1 A1 (3) M1 A1 A1 (3)

Question Number	Scheme	Marks
4	$\begin{aligned} x & =\cos (2 y+\pi) \\ \frac{\mathrm{d} x}{\mathrm{~d} y} & =-2 \sin (2 y+\pi) \\ \frac{\mathrm{d} y}{\mathrm{~d} x} & =-\frac{1}{2 \sin (2 y+\pi)} \\ \text { At } y=\frac{\pi}{4}, \quad \frac{\mathrm{~d} y}{\mathrm{~d} x} & =-\frac{1}{2 \sin \frac{3 \pi}{2}}=\frac{1}{2} \\ y-\frac{\pi}{4} & =\frac{1}{2} x \\ y & =\frac{1}{2} x+\frac{\pi}{4} \end{aligned}$ $\text { Follow through their } \frac{\mathrm{d} x}{\mathrm{~d} y}$ before or after substitution	M1 A1 A1ft B1 M1 A1 (6) [6]

Question Number	Scheme	Marks
7 (a)	$\begin{aligned} \mathrm{f}^{\prime}(x) & =3 \mathrm{e}^{x}+3 x \mathrm{e}^{x} \\ 3 \mathrm{e}^{x}+3 x \mathrm{e}^{x} & =3 \mathrm{e}^{x}(1+x)=0 \\ x & =-1 \\ \mathrm{f}(-1) & =-3 \mathrm{e}^{-1}-1 \end{aligned}$	M1 A1 M1 A1 B1 (5)
(b)	$\begin{align*} & x_{1}=0.2596 \\ & x_{2}=0.2571 \\ & x_{3}=0.2578 \tag{3} \end{align*}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$
(c)	Choosing ($0.25755,0.25765$) or an appropriate tighter interval. $\begin{aligned} & \mathrm{f}(0.25755)=-0.000379 \ldots \\ & \mathrm{f}(0.25765)=0.000109 \ldots \end{aligned}$	M1 A1
	Change of sign (and continuity) \Rightarrow root $\in(0.25755,0.25765) * \quad$ cso ($\Rightarrow x=0.2576$, is correct to 4 decimal places) Note: $x=0.25762765 \ldots$ is accurate	A1 (3) [11]

Question Number	Scheme		Marks	
8 (a)	$\begin{aligned} R^{2} & =3^{2}+4^{2} \\ R & =5 \\ \tan \alpha & =\frac{4}{3} \\ \alpha & =53 \ldots \text { 。 } \end{aligned}$	awrt 53°	M1 A1 M1 A1	(4)
	Maximum value is 5	ft their R	B1 ft	
	At the maximum, $\cos (\theta-\alpha)=1$ or $\theta-\alpha=0$ $\theta=\alpha=53 \ldots{ }^{\circ}$	ft their α	M1	
	$f(t)=10+5 \cos (15 t-\alpha)^{\circ}$ Minimum occurs when $\cos (15 t-\alpha)^{\circ}=-1$ The minimum temperature is $(10-5)^{\circ}=5^{\circ}$			
			M1	
			A1 ft	(2)
	$\begin{aligned} 15 t-\alpha & =180 \\ t & =15.5 \end{aligned}$		M1	
		awrt 15.5		[12]

January 2009
6666 Core Mathematics C4 Mark Scheme

Question Number	Scheme	Marks
1 (a)	$C: y^{2}-3 y=x^{3}+8$	
	Differentiates implicitly to include either $\left\{\frac{x}{x} \not x\right\} \quad 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}$ $\pm k y \frac{\mathrm{~d} y}{\mathrm{~d} x} \text { or } \pm 3 \frac{\mathrm{~d} y}{\mathrm{~d} x} .\left(\text { Ignore }\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) .\right)$ Correct equation.	M1 A1
	A correct (condoning sign error) attempt to $(2 y-3) \frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}$ combine or factorise their ' $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-3 \frac{\mathrm{~d} y}{\mathrm{~d} x}$,	M1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 x^{2}}{2 y-3}$ $\frac{3 x^{2}}{2 y-3}$	A1 oe
	$y=3 \Rightarrow 9-3(3)=x^{3}+8$ Substitutes $y=3$ into C.	(4) M1
	$x^{3}=-8 \Rightarrow \underline{x=-2} \quad$ Only $\underline{x=-2}$	A1
	$\begin{array}{r} \frac{\mathrm{d} y}{\mathrm{~d} x}=4 \text { from correct working. } \\ (-2,3) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3(4)}{6-3} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 \quad \text { Also can be ft using their ' } x \text { ' value and } y=3 \text { in the } \\ \text { correct part (a) of } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 x^{2}}{2 y-3} \end{array}$ 1(b) final $\mathbf{A 1} \sqrt{ }$. Note if the candidate inserts their x value and $y=3$ into $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 x^{2}}{2 y-3}$, then an answer of $\frac{\mathrm{d} y}{\mathrm{~d} x}=$ their $x^{2}, \boldsymbol{m a y}$ indicate a correct follow through.	$\begin{array}{rrr}\text { A1 } & \sqrt{ } \\ \\ \\ & (3)\end{array}$

Question Number	Scheme		Marks
(c)	$\begin{aligned} \text { Actual }=\mathrm{f}(0.2) & =\frac{1.08+6.4+16}{(6.76)(0.8)} \\ & =\frac{23.48}{5.408}=4.341715976 \ldots=\frac{2935}{676} \end{aligned}$ Or $\begin{aligned} \text { Actual }=\mathrm{f}(0.2) & =\frac{4}{(3(0.2)+2)^{2}}+\frac{3}{(1-0.2)} \\ & =\frac{4}{6.76}+3.75=4.341715976 \ldots=\frac{2935}{676} \end{aligned}$ $\begin{aligned} \text { Estimate }=\mathrm{f}(0.2) & =4+\frac{39}{4}(0.2)^{2} \\ & =4+0.39=4.39 \end{aligned}$ $\begin{aligned} \% \text { age error } & =\frac{\|4.39-4.341715976 \ldots\|}{4.341715976 \ldots} \times 100 \\ & =1.112095408 \ldots=1.1 \%(2 \mathrm{sf}) \end{aligned}$	Attempt to find the actual value of $f(0.2)$ or seeing awrt 4.3 and believing it is candidate's actual $\mathrm{f}(0.2)$.	
		Candidates can also attempt to find the actual value by using $\frac{A}{(3 x+2)}+\frac{B}{(3 x+2)^{2}}+\frac{C}{(1-x)}$ with their A, B and C.	M1
		Attempt to find an estimate for $f(0.2)$ using their answer to (b)	M1 $\sqrt{ }$
		$\left\|\frac{\text { their estimate }- \text { actual }}{\text { actual }}\right\| \times 100$	M1
		1.1\%	A1 cao (4)
			[14]

Question Number	Scheme		Marks
(d)	Let $\overrightarrow{O X}=\mathbf{i}+7 \mathbf{j}-3 \mathbf{k}$ be point of intersection $\begin{aligned} & \overrightarrow{A X}=\overrightarrow{O X}-\overrightarrow{O A}=\left(\begin{array}{c} 1 \\ 7 \\ -3 \end{array}\right)-\left(\begin{array}{c} 9 \\ 3 \\ 13 \end{array}\right)=\left(\begin{array}{c} -8 \\ 4 \\ -16 \end{array}\right) \\ & \overrightarrow{O B}=\overrightarrow{O A}+\overrightarrow{A B}=\overrightarrow{O A}+2 \overrightarrow{A X} \end{aligned}$	Finding vector $\overrightarrow{A X}$ by finding the difference between $\overrightarrow{O X}$ and $\overrightarrow{O A}$. Can be ft using candidate's $\overrightarrow{O X}$.	M1 $\sqrt{ } \pm$
	$\overrightarrow{O B}=\left(\begin{array}{c} 9 \\ 3 \\ 13 \end{array}\right)+2\left(\begin{array}{c} -8 \\ 4 \\ -16 \end{array}\right)$	$\left(\begin{array}{c} 9 \\ 3 \\ 13 \end{array}\right)+2(\text { their } \overrightarrow{A X})$	dM1 $\sqrt{ }$
	Hence, $\overrightarrow{O B}=\left(\begin{array}{c}-7 \\ 11 \\ -19\end{array}\right)$ or $\overrightarrow{O B}=\underline{-7 \mathbf{i}+11 \mathbf{j}-19 \mathbf{k}}$	$\begin{aligned} & \underline{\left(\begin{array}{c} -7 \\ 11 \\ -19 \end{array}\right)} \text { or } \underline{-7 \mathbf{i}+11 \mathbf{j}-19 \mathbf{k}} \\ & \text { or }(-7,11,-19) \end{aligned}$	A1
			[13]

January 2009
 6674 Further Pure Mathematics FP1 (legacy) Mark Scheme

Question Number	Scheme	Marks
1 (a) (b)	$\sum_{r=1}^{n} r^{2}-\sum_{r=1}^{n} r-\sum_{r=1}^{n} 1=\frac{1}{6} n(n+1)(2 n+1)-\frac{1}{2} n(n+1)-n$ Simplifying this expression $\begin{gather*} =\frac{1}{3} n\left(n^{2}-4\right) \tag{4}\\ \sum_{r=1}^{20}\left(r^{2}-r-1\right)-\sum_{r=1}^{9}\left(r^{2}-r-1\right)=\frac{1}{3} \times 20 \times\left(20^{2}-4\right)-\frac{1}{3} \times 9 \times\left(9^{2}-4\right) \\ =2409 \end{gather*}$	M1, A1 M1 A1 cso M1 A1 (2)
Alt (b)	$\begin{aligned} & \sum_{r=1}^{20}\left(r^{2}-r-1\right)-\sum_{r=1}^{9}\left(r^{2}-r-1\right)= \\ & \left(\begin{array}{rl} \left(\frac{1}{6} \times 20 \times 21 \times 41-\frac{1}{2} \times 20 \times 21-20\right) \\ = & -\left(\frac{1}{6} \times 9 \times 10 \times 19-\frac{1}{2} \times 9 \times 10-9\right) \end{array}\right. \end{aligned}$	[6]
Notes	(a) $1^{\text {st }} \mathrm{M}$: Separating, substituting set results, at least two correct. $2^{\text {nd }} \mathrm{M}$: Either "eliminate" brackets totally or factor $\mathrm{x}[\ldots . .$.$] where any product of brackets$ inside [....] has been reduced to a single bracket $2^{\text {nd }} A$: ANSWER GIVEN. No wrong working seen; must have been an intermediate step, e.g. $\frac{1}{6} n\left(2 n^{2}+3 n+1-3 n-3-6\right)$. (b) M : Must be $\sum_{r=1}^{20}(\ldots)-.\sum_{r=1}^{9}(\ldots)$ applied. If list terms and add, allow M1 if $\mathbf{1 1}$ terms with at most two wrong: [89, 109, 131, 155, 181, 209, 239, 271, 305, 341, 379]	

Question Number	Scheme	Marks
2	$3-\mathrm{i}$ is a root (seen anywhere)	B1
	Attempt to multiply out $[x-(3+\mathrm{i})][x-(3-\mathrm{i})] \quad\left\{=x^{2}-6 x+10\right\}$ $\mathrm{f}(x)=\left(x^{2}-6 x+10\right)\left(2 x^{2}-2 x+1\right)$	M1 M1, A1
	$\underline{2 \pm \sqrt{4-8}} \quad 1 \pm \mathrm{i}$	
	$x=\frac{2 \pm \sqrt{4-8}}{4}, \quad x=\frac{1 \pm 1}{2}$	*M1, A1
Notes	$1^{\text {st }} \mathrm{M}$: Using the two roots to form a quadratic factor. $2^{\text {nd }} \mathrm{M}$: Complete method to find second quadratic factor $2 x^{2}+\mathrm{ax}(+\mathrm{b})$.	
	$3^{\text {rd }} * \mathrm{M}$: Correct method, as far as $x=\ldots$, for solving candidate's second quadratic, DEPENDENT on both previous M marks	
Alt	$\text { (i) } \mathrm{f}(x) /\{x-(3+\mathrm{i})\}=2 x^{3}+(-8+2 \mathrm{i}) x^{2}+(7-2 \mathrm{i}) x-3+\mathrm{i} \quad\{=\mathrm{g}(x)\}$ $\mathrm{g}(x) /\{x-(3-\mathrm{i})\}=\left(2 x^{2}-2 x+1\right)$ Attempt at complete process M2; A1	Lines 2 and 3
	Either $-2 a-6=-7$, or two of $10\left(b^{2}+a^{2}\right)=5$ or $-6\left(a^{2}+b^{2}\right)-20 a=-13$, $20+2\left(b^{2}+a^{2}\right)+24 a=33$ A1; Complete method for a and $b, M 1$; AnswerA1	Lines 3 and 4

Question Number	Scheme	Marks
3	Identifying 3 as critical value e.g. used in soln Identifying 0 as critical value e.g. used in soln	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$
	$\frac{x^{3}+5 x-12-4(x-3)}{x-3}>0 \quad$ or $\quad\left(x^{3}+5 x-12\right)(x-3)>4(x-3)^{2}$ o.e.	M1
	$\frac{x\left(x^{2}+1\right)}{x-3}>0 \quad \text { or } \quad(x-3)\left(x^{3}+x\right)>0$	A1
	Using their critical values to obtain inequalities. $x<0 \text { or } x>3$	M1 A1 cso
Notes	$1^{\text {st }} \mathrm{M}$ must be a valid opening strategy. Sketching $y=\frac{x}{x-3}$ or $y=\frac{x\left(x^{2}+1\right)}{x-3}$ should mark as scheme.	
	The result $0>x>3$ (poor notation) can gain final M but not A .	
Alt	4 i	
	Identifying 3 as critical value e.g. $x=3$ seen as asymp.	B1
	Identifying 0 as critical value e.g. pt of intersection on y-axis of $y=\frac{x^{3}+5 x-12}{x-3}$ and $y=4$	
	M1 $y=\frac{x^{3}+5 x-12}{x-3}$ sketched for $x<3$ or $y=\frac{x^{3}+5 x-12}{x-3}$ sketched for $x>3$ A1 All correct including $y=4$ drawn	M1, A1
	Using the graph values to obtain one or more inequalities $x<0 \text { or } x>3$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$

Question Number	Scheme	Marks
8 (a) (b) (c) (d)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{1}{t^{2}} \times \frac{\mathrm{d} t}{\mathrm{~d} x} \\ & \begin{array}{l} \sin x \times-\frac{1}{t^{2}} \times \frac{\mathrm{d} t}{\mathrm{~d} x}+\frac{1}{t} \cos x=\frac{1}{t^{2}} \\ \frac{\mathrm{~d} t}{\mathrm{~d} x}-t \cot x=-\operatorname{cosec} x \quad \\ \mathrm{I}=\mathrm{e}^{\int-\cot x \mathrm{~d} x} \\ =\mathrm{e}^{-\ln \sin x} \\ =\frac{1}{\sin x} \text { or } \operatorname{cosec} x \end{array} \\ & \frac{1}{\sin x} \frac{\mathrm{~d} t}{\mathrm{~d} x}-t \frac{\cos x}{\sin ^{2} x}=-\operatorname{cosec}^{2} x \\ & \frac{t}{\sin x}=\int-\operatorname{cosec}^{2} x \mathrm{~d} x \quad \text { or } \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{t}{\sin x}\right)=-\operatorname{cosec}^{2} x \\ & \frac{t}{\sin x}=\cot x \quad(+c) \quad \text { o.e. } \\ & t=\cos x+c \sin x \Rightarrow y=\frac{1}{\cos x+c \sin x} \quad(*) \\ & \frac{\sqrt{2}}{3}=\frac{1}{\frac{1}{\sqrt{2}}+\frac{c}{\sqrt{2}}} \\ & \sqrt{2}\left(\frac{1}{\sqrt{2}}+\frac{c}{\sqrt{2}}\right)=3 \\ & x=2 \\ & x=\frac{\pi}{2}, y=\frac{1}{2} \end{aligned}$ ft on their c (a) $1^{\text {st }} \mathrm{M}$: Use of $\frac{\mathrm{d} y}{\mathrm{~d} t} \cdot \frac{\mathrm{~d} t}{\mathrm{~d} x} \quad$ (even if integrated $1 / \mathrm{t}$) $2^{\text {nd }} \mathrm{M}$: Substituting for $\frac{\mathrm{d} y}{\mathrm{~d} x}, y, y^{2}$ to form d.e. in x and t only (b) $1^{\text {st }} \mathrm{M}$: For $\mathrm{e}^{\int-\cot x d x}$ (allow $\mathrm{e}^{\int \cot x \mathrm{dx}}$) and attempt at integrating $2^{\text {nd* }} \mathrm{M}$: Multiplying by integrating factor (requires at least two terms "correct" for their IF.) (can be implied) 3rdAlf.t: is only for those who have I.F. $=\sin x$ or $-\sin x$ $\frac{\mathrm{d}}{\mathrm{d} x}(t \sin x)=-1 \quad$ equivalent integral (c) M: Substituting to find $\mathrm{t}=1 / y$ in their solution to (b) (d) M: Using $\mathrm{y}=\frac{\sqrt{2}}{3}, x=\frac{\pi}{4}$ to find a value for c.	M1, A1 M1 A1 cso(4) M1 A1 M1 A1f.t. A1 cso (5) M1, A1 (2) M1 A1 A1ft (3) [14]

January 2009
 6667 Further Pure Mathematics FP1 (new)
 Mark Scheme

Question Number	Scheme	Marks
$\mathbf{1}$	$x-3$ is a factor $\mathrm{f}(x)=(x-3)\left(2 x^{2}-2 x+1\right)$ Attempt to solve quadratic i.e. $x=\frac{2 \pm \sqrt{4-8}}{4}$ $x=\frac{1 \pm \mathrm{i}}{2}$	B1
	M1 A1	

Notes:
First and last terms in second bracket required for first M1
Use of correct quadratic formula for their equation for second M1

Question Number	Scheme	Marks
$2 \quad(\mathrm{a})$	$\begin{aligned} & 6 \sum r^{2}+4 \sum r-\sum 1=6 \frac{n}{6}(n+1)(2 n+1)+4 \frac{n}{2}(n+1),-n \\ & =\frac{n}{6}\left(12 n^{2}+18 n+6+12 n+12-6\right) \text { or } n(n+1)(2 n+1)+(2 n+1) n \\ & =\frac{n}{6}\left(12 n^{2}+30 n+12\right)=n\left(2 n^{2}+5 n+2\right)=n(n+2)(2 n+1) \quad * \end{aligned}$	M1 A1, B1
		M1
		A1 (5)
	$\sum^{20}\left(6 r^{2}+4 r-1\right)-\sum^{10}\left(6 r^{2}+4 r-1\right)=20 \times 22 \times 41-10 \times 12 \times 21$	M1
	$=15520$	A1

Notes:
(a) First M1 for first 2 terms, B1 for $-n$

Second M1 for attempt to expand and gather terms.
Final A1 for correct solution only
(b) Require (r from 1 to 20) subtract (r from 1 to 10) and attempt to substitute for M1

Question Number	Scheme	Marks
3 (a)	$x y=25=5^{2}$ or $c= \pm 5$	B1 (1)
(b)	A has co-ords (5,5) and B has co-ords $(25,1)$	B1
	Mid point is at (15,3)	M1A1
		(3) [4]

Notes:
(a) $x y=25$ only B1, $c^{2}=25$ only B1, $c=5$ only B1
(b) Both coordinates required for B1

Add theirs and divide by 2 on both for M1

Question Number	Scheme	Marks
4	When $n=1$, LHS $=\frac{1}{1 \times 2}=\frac{1}{2}$, RHS $=\frac{1}{1+1}=\frac{1}{2}$. So LHS $=$ RHS and result true for $n=1$ Assume true for $n=k ; \sum_{r=1}^{k} \frac{1}{r(r+1)}=\frac{k}{k+1}$ and so $\sum_{r=1}^{k+1} \frac{1}{r(r+1)}=\frac{k}{k+1}+\frac{1}{(k+1)(k+2)}$ $\sum_{r=1}^{k+1} \frac{1}{r(r+1)}=\frac{k(k+2)+1}{(k+1)(k+2)}=\frac{k^{2}+2 k+1}{(k+1)(k+2)}=\frac{(k+1)^{2}}{(k+1)(k+2)}=\frac{k+1}{k+2}$ and so result is true for $n=k+1$ (and by induction true for $n \in \mathbf{Z}^{+}$)	B1 M1 M1 A1 B1 [5]

Notes:
Evaluate both sides for first B1
Final two terms on second line for first M1
Attempt to find common denominator for second M1.
Second M1 dependent upon first.
$\frac{k+1}{k+2}$ for A1
'Assume true for $n=k$ 'and 'so result true for $n=k+1$ ' and correct solution for final B1

Notes:

(a) awrt 0.3 and -0.3 and indication of sign change for first A1
(b) Multiply by power and subtract 1 from power for evidence of differentiation and award of first M1
(c) awrt 0.309 B 1 and awrt -6.37 B 1 if answer incorrect

Evidence of Newton-Raphson for M1
Evidence of Newton-Raphson and awrt 1.15 award 4/4

Question Number	Scheme	Marks
6	At $n=1, u_{n}=5 \times 6^{0}+1=6$ and so result true for $n=1$ Assume true for $n=k ; u_{k}=5 \times 6^{k-1}+1$, and so $u_{k+1}=6\left(5 \times 6^{k-1}+1\right)-5$ $\therefore u_{k+1}=5 \times 6^{k}+6-5 \quad \therefore u_{k+1}=5 \times 6^{k}+1$ and so result is true for $n=k+1$ and by induction true for $n \geq 1$	B1 M1, A1 A1 B1

Notes:
6 and so result true for $n=1$ award B1
Sub u_{k} into u_{k+1} or M1 and A1 for correct expression on right hand of line 2
Second A1 for $\therefore u_{k+1}=5 \times 6^{k}+1$
'Assume true for $n=k$ ' and 'so result is true for $n=k+1$ ' and correct solution for final B1

Question Number	Scheme	Marks
7 (a)	The determinant is $a-2$	M1
(b)	$\mathbf{X}^{-1}=\frac{1}{a-2}\left(\begin{array}{rr} -1 & -a \\ 1 & 2 \end{array}\right)$	M1 A1 (3)
	$\mathbf{I}=\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right)$	B1
	Attempt to solve $2-\frac{1}{a-2}=1$, or $a-\frac{a}{a-2}=0$, or $-1+\frac{1}{a-2}=0$, or $-1+\frac{2}{a-2}=1$	M1
	To obtain $a=3$ only	A1 cso
		$\begin{gathered} \text { (3) } \\ {[6]} \end{gathered}$
	Alternatives for (b)	
	If they use $\mathbf{X}^{\mathbf{2}}+\mathbf{I}=\mathbf{X}$ they need to identify \mathbf{I} for B 1, then attempt to solve suitable equation for M1 and obtain $a=3$ for A1	
	If they use $\mathbf{X}^{2}+\mathbf{X}^{-1}=\mathbf{O}$, they can score the B1then marks for solving If they use $\mathbf{X}^{3}+\mathbf{I}=\mathbf{O}$ they need to identify \mathbf{I} for B 1, then attempt to solve suitable equation for M1 and obtain $a=3$ for A1	

Notes:
(a) Attempt $a d-b c$ for first M1
$\frac{1}{\operatorname{det}}\left(\begin{array}{ll}-1 & -a \\ 1 & 2\end{array}\right)$ for second M1
(b) Final A1 for correct solution only

Question Number	Scheme	Marks
8 (a)	$\frac{d y}{d x}=a^{\frac{1}{2}} x^{-\frac{1}{2}} \quad \text { or } 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 a$ The gradient of the tangent is $\frac{1}{q}$	M1 A1
	The equation of the tangent is $y-2 a q=\frac{1}{q}\left(x-a q^{2}\right)$	M1
	So $y q=x+a q^{2}$ * *	A1
(b)	R has coordinates ($0, a q$)	B1
	The line l has equation $y-a q=-q x$	M1A1 (3)
(c)	When $y=0 \quad x=a$ (so line l passes through $(a, 0)$ the focus of the parabola.)	B1
(d)	Line l meets the directrix when $x=-a$: Then $y=2 a q$. So coordinates are ($-a, 2 a q$)	M1:A1 (2) [10]

Notes:

(a) $\frac{d y}{d x}=\frac{2 a}{2 a q}$ OK for M1

Use of $y=m x+c$ to find c OK for second M1
Correct solution only for final A1
(b) $-1 /($ their gradient in part a) in equation OK for M1
(c) They must attempt $y=0$ or $x=a$ to show correct coordinates of R for B1
(d) Substitute $x=-a$ for M1.

Both coordinates correct for A1.

Notes:
(a) $\times \frac{3-2 i}{3-2 i}$ for M1
(b) Position of points not clear award B1B0
(c) Use of calculator / decimals award M1A0
(d) Final answer must be in complex form for A1
(e) Radius or diameter for M1

Question Number	Scheme	Marks
10 (a)	A represents an enlargement scale factor $3 \sqrt{2}$ (centre O)	M1 A1
	B represents reflection in the line $y=x$ C represents a rotation of $\frac{\pi}{4}$, i.e. 45° (anticlockwise) (about O)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$ (4)
	$\left(\begin{array}{rr} 3 & -3 \\ 3 & 3 \end{array}\right)$	M1 A1 (2)
	$\left(\begin{array}{rr} 3 & -3 \\ 3 & 3 \end{array}\right)\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right)=\left(\begin{array}{rr} -3 & 3 \\ 3 & 3 \end{array}\right)$	B1 (1)
	$\left(\begin{array}{rr} -3 & 3 \\ 3 & 3 \end{array}\right)\left(\begin{array}{ccc} 0 & -15 & 4 \\ 0 & 15 & 21 \end{array}\right)=\left(\begin{array}{ccc} 0 & 90 & 51 \\ 0 & 0 & 75 \end{array}\right) \text { so }(0,0),(90,0) \text { and }(51,75)$	M1A1A1A1 (4)
	Area of $\Delta O R^{\prime} S^{\prime}$ is $\frac{1}{2} \times 90 \times 75=3375$	B1
	Determinant of \mathbf{E} is -18 or use area scale factor of enlargement So area of $\triangle O R S$ is $3375 \div 18=187.5$	$\begin{array}{cc} \text { M1A1 } & (3) \\ & {[14]} \end{array}$

Notes:
(a) Enlargement for M1
$3 \sqrt{2}$ for A1
(b) Answer incorrect, require $\mathbf{C D}$ for M1
(c) Answer given so require DB as shown for B1
(d) Coordinates as shown or written as $\binom{0}{0},\binom{90}{0},\binom{51}{75}$ for each A1
(e) 3375 B 1

Divide by theirs for M1

January 2009
6677 Mechanics M1
Mark Scheme

Question Number	Scheme	Marks
1	$\begin{aligned} -6 \mathbf{i}+\mathbf{j} & =\mathbf{u}+3(2 \mathbf{i}-5 \mathbf{j}) \\ \Rightarrow \mathbf{u} & =-12 \mathbf{i}+16 \mathbf{j} \\ \Rightarrow u & =\sqrt{(-12)^{2}+16^{2}}=20 \end{aligned}$	M1 A1 A1 cso M1 A1 [5]
2 (a) (b)	 shape or values $\begin{aligned} & 19.6=\frac{1}{2} \times 2 \times u \\ & u=19.6 \end{aligned}$	B1 B1 (2) M1 A1 A1 (3) [5]
(a) (b) (c)	$\begin{array}{rlrl} 2 u \rightarrow & \leftarrow 4 u & k m 2 u-4 m u & =-k m u+m v \\ k m & m & u(3 k-4) & =v \end{array}$ $k>2 \Rightarrow v>0 \Rightarrow \operatorname{dir}^{\mathrm{n}}$ of motion reversed For B, $\begin{aligned} & m(u(3 k-4)--4 u) \\ & \quad=7 m u \end{aligned}$	M1 A1 A1 (3) M1A1A1 CSO (3) M1 A1 f.t. A1 (3) [9]

Question Number	Scheme	Marks
4 (a) (b)	$\begin{aligned} & C+D=120 g \\ & M(Q), \quad 80 g \cdot 0.8-40 g \cdot 0 \cdot 4=D \cdot 1.6 \end{aligned}$ solving $C=90 g ; D=30 g$	M1 A1 M1 A1 M1 A1 A1 (7)
(b)	$\begin{aligned} & \quad 2 F+F=40 g+20 g+60 g \\ & M(Q), 60 g x+20 g \cdot 0.8=40 g \cdot 0.4+F .1 .6 \\ & \text { solving } \\ & Q X=x=\frac{16}{15} \mathrm{~m}=1.07 \mathrm{~m} \end{aligned}$	M1 A1 M1 A1 M1 A1 (6) [13]

Question Number	Scheme	Marks
5 (a)		B2 -1 e.e.o.o. (labels not needed)
(b)	$F=\frac{1}{2} R$ (\uparrow), $R \cos \alpha+F \sin \alpha=m g$ $R=\frac{1.1 g}{\left(\cos \alpha+\frac{1}{2} \sin \alpha\right)}=9.8 \mathrm{~N}$	B1
		M1 A2
	$\begin{aligned} (\rightarrow), & P+\frac{1}{2} R \cos \alpha=R \sin \alpha \\ P & =R\left(\sin \alpha-\frac{1}{2} \cos \alpha\right) \\ & =1.96 \end{aligned}$	M1 A2 M1
		[13]

January 2009
6678 Mechanics M2
Mark Scheme

Question Number	Scheme	Marks
1	$\mathrm{F}=$ ma parallel to the slope, $T-1500 g \sin \theta-650=1500 a$ Tractive force, $30000=T \times 15$ $\begin{aligned} & a=\frac{\frac{30000}{15}-1500(9.8)\left(\frac{1}{14}\right)-650}{1500} \\ & \underline{0.2}\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	M1* A1 M1* d*M1 A1 (5) [5]
2 (a)	$s<\int^{B} \quad F=\mu R \Rightarrow F=\frac{11}{25} \times 100 g$	B1 M1 A1
(b)	$\begin{aligned} & \mathrm{M}(A): \\ & 25 g \times 2 \cos \beta+75 g \times 2.8 \cos \beta \\ & =S \times 4 \sin \beta \\ & \mathrm{R}(\leftrightarrow): F=S \\ & 176 g \sin \beta=260 g \cos \beta \\ & \beta=56\left(^{\circ}\right) \end{aligned}$	M1 A2, 1, 0 M1A1 A1
(c)	So that Reece's weight acts directly at the point C.	(6) B1 [10]

Question Number	Scheme	Marks
(d)	After collision with wall, speed $Q=\frac{1}{5} y=\frac{1}{5}\left(\frac{5 u}{4}\right)=\frac{1}{4} u \quad$ their y Time for $P, T_{A B}=\frac{\frac{3 d}{5}-x}{\frac{1}{2} u}$, Time for $Q, T_{W B}=\frac{x}{\frac{1}{4} u} \quad$ from their y Hence $T_{A B}=T_{W B} \Rightarrow \frac{\frac{3 d}{5}-x}{\frac{1}{2} u}=\frac{x}{\frac{1}{4} u}$ gives, $2\left(\frac{3 d}{5}-x\right)=4 x \Rightarrow \frac{3 d}{5}-x=2 x, 3 x=\frac{3 d}{5} \Rightarrow x=\frac{1}{5} d$	B1ft B1ft M1 A1 cao (4)
or (d)	After collision with wall, speed $Q=\frac{1}{5} y=\frac{1}{5}\left(\frac{5 u}{4}\right)=\frac{1}{4} u \quad$ their y speed $P=x=\frac{1}{2} u$, speed P : new speed $Q=\frac{1}{2} u: \frac{1}{4} u=2: 1$ from their y Distance of B from wall $=\frac{1}{3} \times \frac{3 d}{5} ;=\frac{d}{5}$ their $\frac{1}{2+1}$	B1ft B1ft M1; A1
$2^{\text {nd }}$ or (d)	After collision with wall, speed $Q=\frac{1}{5} y=\frac{1}{5}\left(\frac{5 u}{4}\right)=\frac{1}{4} u \quad$ their y Combined speed of P and $Q=\frac{1}{2} u+\frac{1}{4} u=\frac{3}{4} u$ Time from wall to $2^{\text {nd }}$ collision $=\frac{\frac{3 d}{5}}{\frac{3 u}{4}}=\frac{3 d}{5} \times \frac{4}{3 u}=\frac{4 d}{5 u} \quad$ from their y Distance of B from wall $=($ their speed $) \mathrm{x}($ their time $)=\frac{u}{4} \times \frac{4 d}{5 u} ;=\frac{1}{5} d$	B1ft B1ft M1; A1 (4) [17]

January 2009
6679 Mechanics M3
Mark Scheme

Question Number	Scheme	Marks
1	N2L $\begin{aligned} & 3 a=-\left(9+\frac{15}{(t+1)^{2}}\right) \\ & 3 v=-9 t+\frac{15}{t+1}(+A) \\ & v=0, t=4 \Rightarrow 0=-36+3+A \Rightarrow A=33 \\ & v \Rightarrow-3 t+\frac{5}{t+1}+11 \\ & t=0 \Rightarrow v=16 \end{aligned}$	B1 M1 A1ft M1 A1 M1 A1 (7) [7]
		M1 A1 A1
	$\begin{align*} T^{2} & =\left(\frac{4}{3} m g\right)^{2}+(m g)^{2} \\ \text { Leading to } \quad T & =\frac{5}{3} m g \tag{5} \end{align*}$	M1 A1
	$\begin{aligned} \mathrm{HL} \quad T & =\frac{\lambda x}{a} \Rightarrow \frac{5}{3} m g=\frac{3 m g e}{a} \quad \mathrm{ft} \text { their } T \\ e & =\frac{5}{9} a \\ E=\frac{\lambda x^{2}}{2 a} & =\frac{3 m g}{2 a} \times\left(\frac{5}{9} a\right)^{2}=\frac{25}{54} m g a \end{aligned}$	M1 A1ft M1 A1 (4) [9]

Question Number	Scheme	Marks
3	$\omega=\frac{80 \times 2 \pi}{60} \mathrm{rad} \mathrm{~s}^{-1}\left(=\frac{8 \pi}{3} \approx 8.377 \ldots\right)$ Accept $v=\frac{16 \pi}{75} \approx 0.67 \mathrm{~ms}^{-1}$ as equivalent $(\uparrow) \quad R=m g$ For least value of $\mu \quad(\leftarrow) \mu m g=m r \omega^{2}$ $\mu=\frac{0.08}{9.8} \times\left(\frac{8 \pi}{3}\right)^{2} \approx 0.57 \quad \text { accept } 0.573$	B1 B1 M1 A1 $=A 1$ M1 A1 (7) [7]
4 (a) (b)	$\begin{gathered} a=8 \\ T=\frac{25}{2}=\frac{2 \pi}{\omega} \Rightarrow \omega=\frac{4 \pi}{25}(\approx 0.502 \ldots) \\ v^{2}=\omega^{2}\left(a^{2}-x^{2}\right) \Rightarrow v^{2}=\left(\frac{4 \pi}{25}\right)^{2}\left(8^{2}-3^{2}\right) \\ v=\frac{4 \pi}{25} \sqrt{ } 55 \approx 3.7\left(\mathrm{mh}^{-1}\right) \\ x=a \cos \omega t \Rightarrow 3=8 \cos \left(\frac{4 \pi}{25} t\right) \\ t \approx 2.3602 \ldots \\ \text { time is } 1222 \end{gathered}$ ft their a, ω awrt 3.7 ft their a, ω	B1 M1 A1 M1 A1ft M1 A1 (7) M1 A1ft M1 (4) [11]

Question Number	Scheme	Marks
5 (a)	Let x be the distance from the initial position of B to C $\begin{aligned} \text { GPE lost } & =\text { EPE gained } \\ m g x \sin 30^{\circ} & =\frac{6 m g x^{2}}{2 a} \end{aligned}$ Leading to $x=\frac{a}{6}$ $A C=\frac{7 a}{6}$	M1 A1 $=A 1$ M1 A1 (5)
(b)	The greatest speed is attained when the acceleration of B is zero, that is where the forces on B are equal. $\begin{gathered} (\mathbb{N}) \quad T=m g \sin 30^{\circ}=\frac{6 m g e}{a} \\ e=\frac{a}{12} \\ \mathrm{CE} \quad \frac{1}{2} m v^{2}+\frac{6 m g}{2 a}\left(\frac{a}{12}\right)^{2}=m g \frac{a}{12} \sin 30^{\circ} \\ \text { Leading to } \quad v=\sqrt{ }\left(\frac{g a}{24}\right)=\frac{\sqrt{6 g a}}{12} \end{gathered}$ Alternative approaches to (b) are considered on the next page.	M1 A1 M1 A1 $=A 1$ M1 A1 (7) [12]

Question Number	Scheme	Marks
5	Alternative approach to (b) using calculus with energy. Let distance moved by B be x $\mathrm{CE} \quad \begin{aligned} \frac{1}{2} m v^{2}+\frac{6 m g}{2 a} x^{2} & =m g x \sin 30^{\circ} \\ v^{2} & =g x-\frac{6 g}{a} x^{2} \end{aligned}$ For maximum v $\begin{aligned} \frac{\mathrm{d}}{\mathrm{~d} x}\left(v^{2}\right) & =2 v \frac{\mathrm{~d} v}{\mathrm{~d} x}=g-\frac{12 g}{a} x=0 \\ x & =\frac{a}{12} \\ v^{2} & =g\left(\frac{a}{12}\right)-\frac{6 g}{a}\left(\frac{a}{12}\right)^{2}=\frac{g a}{24} \\ v & =\sqrt{ }\left(\frac{g a}{24}\right) \end{aligned}$	M1 A1 $=A 1$ M1 A1 M1 (7)
	Alternative approach to (b) using calculus with Newton's second law. As before, the centre of the oscillation is when extension is $\frac{a}{12}$	M1 A1 M1 A1 A1 M1 A1

Question Number	Scheme	Marks
7 (a) (b)	Let speed at C be u $\begin{gathered} \frac{1}{2} m u^{2}-\frac{1}{2} m\left(\frac{a g}{4}\right)=m g a(1-\cos \theta) \\ u^{2}=\frac{9 g a}{4}-2 g a \cos \theta \\ m g \cos \theta(+R)=\frac{m u^{2}}{a} \\ m g \cos \theta=\frac{9 m g}{4}-2 m g \cos \theta \end{gathered}$ eliminating u Leading to $\cos \theta=\frac{3}{4} *$ At $C \quad u^{2}=\frac{9 g a}{4}-2 g a \times \frac{3}{4}=\frac{3}{4} g a$ $(\rightarrow) \quad u_{x}=u \cos \theta=\sqrt{ }\left(\frac{3 g a}{4}\right) \times \frac{3}{4}=\sqrt{ }\left(\frac{27 g a}{64}\right)=2.033 \sqrt{a}$ (\downarrow) $\begin{gathered} u_{y}=u \sin \theta=\sqrt{ }\left(\frac{3 g a}{4}\right) \times \frac{\sqrt{ } 7}{4}=\sqrt{ }\left(\frac{21 g a}{64}\right)=1.792 \sqrt{a} \\ v_{y}^{2}=u_{y}^{2}+2 g h \Rightarrow v_{y}^{2}=\frac{21}{64} g a+2 g \times \frac{7}{4} a=\frac{245}{64} g a \\ \tan \psi=\frac{v_{y}}{u_{x}}=\sqrt{ }\left(\frac{245}{27}\right) \approx 3.012 \ldots \\ \psi \approx 72^{\circ} \\ \text { Or } 1.3^{\circ}\left(1.2502^{\circ}\right) \end{gathered}$	M1 A1 M1 A1 M1 M1 A1 (7) B1 M1 A1ft M1 M1 A1 M1 A1 (8) [15]
	Alternative for the last five marks Let speed at P be v. $\begin{gathered} \text { CE } \begin{aligned} & \frac{1}{2} m v^{2}-\frac{1}{2} m\left(\frac{a g}{4}\right)=m g \times 2 a \\ & v^{2}=\frac{17 m g a}{4} \\ & \cos \psi=\frac{u_{x}}{v}= \sqrt{ }\left(\frac{27}{64} \times \frac{4}{17}\right)=\sqrt{ }\left(\frac{27}{272}\right) \approx 0.315 \\ & \psi \approx 72^{\circ} \quad \text { awrt equiva } 72^{\circ} \end{aligned} \\ \\ \\ \end{gathered}$ Note: The time of flight from C to P is $\frac{\sqrt{235}-\sqrt{21}}{8} \sqrt{\left(\frac{a}{g}\right)} \approx 1.38373 \sqrt{\left(\frac{a}{g}\right)}$	M1 M1 A1 M1 A1

January 2009
6683 Statistics S1
Mark Scheme

Question Number	Scheme ${ }^{\text {a }}$ Marks
$1 \begin{array}{ll} \\ & \text { (a) } \\ & \text { (b) } \\ \\ & \text { (c) } \\ & \text { (d) } \\ & \text { (e) }\end{array}$	$\begin{aligned} & \mathrm{S}_{x x}=57.22-\frac{(21.4)^{2}}{10}=11.424 \\ & \mathrm{~S}_{x y}=313.7-\frac{21.4 \times 96}{10}=108.26 \\ & b=\frac{\mathrm{S}_{x y}}{\mathrm{~S}_{x x}}=9.4765 \ldots \\ & a=\bar{y}-b \bar{x}=9.6-2.14 b=(-10.679 \ldots) \\ & y=-10.7+9.48 x \end{aligned}$ Every (extra) hour spent using the programme produces about 9.5 marks improvement $\begin{equation*} y=-10.7+9.48 \times 3.3,=20.6 \tag{2} \end{equation*}$ awrt 21 Model may not be valid since [8h is] outside the range [0.5-4].
(a) (b) (c) (d) (e)	```M1 for a correct expression \(1^{\text {st }}\) A1 for AWRT 11.4 for \(\mathrm{S}_{x x}\) \(2^{\text {nd }}\) A1 for AWRT 108 for \(\mathrm{S}_{x y}\) Correct answers only: One value correct scores M1 and appropriate A1, both correct M1A1A1 \(1^{\text {st }}\) M1 for using their values in correct formula \(1^{\text {st }} \mathrm{A} 1\) for AWRT 9.5 \(2^{\text {nd }}\) M1 for correct method for \(a\) (minus sign required) \(2^{\text {nd }} \mathrm{A} 1\) for equation with \(a\) and \(b\) AWRT 3 sf (e.g. \(y=-10.68+9.48 x\) is fine) Must have a full equation with \(a\) and \(b\) correct to awrt 3 sf B1ft for comment conveying the idea of \(b\) marks per hour. Must mention value of \(b\) but can ft their value of \(b\). No need to mention "extra" but must mention "marks" and "hour(s)" e.g. " ...9.5 times per hour ..." scores B0 M1 for sub \(x=3.3\) into their regression equation from the end of part (b) A1 for awrt 21 B1 for a statement that says or implies that it may not be valid because outside the range. They do not have to mention the values concerned here namely 8 h or 0.5-4```

\begin{tabular}{|c|c|}
\hline Question
Number \& Scheme Marks

\hline 2 \&

\hline (a)
(b)

(c) \& \multirow[t]{2}{*}{| M1 for $\frac{9}{25} \times \frac{2}{3}$ or $\mathrm{P}(E \mid B) \times \mathrm{P}(B)$ and at least one correct value seen. A1 for 0.24 or exact equiv. |
| :--- |
| NB $\frac{2}{5} \times \frac{2}{3}$ alone or $\frac{2}{5} \times \frac{9}{25}$ alone scores M0A0. Correct answer scores full marks. |
| $1^{\text {st }}$ M1 for use of the addition rule. Must have 3 terms and some values, can ft their (a) |
| Or a full method for $\mathrm{P}\left(E^{\prime} \mid B^{\prime}\right)$ requires $1-\mathrm{P}\left(E \mid B^{\prime}\right)$ and equation for $\mathrm{P}\left(E \mid B^{\prime}\right)$: (a) $+\frac{x}{3}=\frac{2}{5}$ |
| Or a full method for $\mathrm{P}\left(B^{\prime} \cap E\right)$ or $\mathrm{P}\left(B \cap E^{\prime}\right)$ [or other valid method] |
| $2^{\text {nd }} \mathrm{M} 1$ for a method leading to answer e.g. $1-\mathrm{P}(E \cup B)$ $\text { or } \mathrm{P}\left(B^{\prime}\right) \times \mathrm{P}\left(E^{\prime} \mid B^{\prime}\right) \text { or } \mathrm{P}\left(B^{\prime}\right)-\mathrm{P}\left(B^{\prime} \cap E\right) \text { or } \mathrm{P}\left(E^{\prime}\right)-\mathrm{P}\left(B \cap E^{\prime}\right)$ |
| Venn Diagram $1^{\text {st }} \mathrm{M} 1$ for diagram with attempt at $\frac{2}{5}-\mathrm{P}(B \cap E)$ or $\frac{2}{3}-\mathrm{P}(B \cap E)$. Can ft their (a) $1^{\text {st }} \mathrm{A} 1$ for a correct first probability as listed or 32,18 and 12 on Venn Diagram $2^{\text {nd }}$ M1 for attempting 75 - their $(18+32+12)$ |
| M1 for identifying suitable values to test for independence e.g. $\mathrm{P}(E)=0.40$ and $\mathrm{P}(E \mid B)=0.36$ Or $\mathrm{P}(E) \times \mathrm{P}(B)=\ldots$ and $\mathrm{P}(E \cap B)=$ their (a) [but their $(\mathrm{a}) \neq \frac{2}{5} \times \frac{2}{3}$]. Values seen somewhere |
| A1 for correct values and a correct comment |
| Diagrams You may see these or find these useful for identifying probabilities. |
| Common Errors |
| (a) $\frac{9}{25}$ is M0A0 |
| (b) $\mathrm{P}(E \cup B)=\frac{53}{75}$ scores M1A0 |
| $1-\mathrm{P}(E \cup B)=\frac{22}{75}$ scores M1A0 |
| (b) $\mathrm{P}\left(B^{\prime}\right) \times \mathrm{P}\left(E^{\prime}\right)=\frac{1}{3} \times \frac{3}{5}$ |
| scores 0/4 |}

\hline \&

\hline
\end{tabular}

January 2009
 6684 Statistics S2
 Mark Scheme

Question Number	Scheme	Marks
3 (a)	$X \sim \mathrm{~B}(20,0.3)$ $\mathrm{P}(X \leq 2)=0.0355$ $\mathrm{P}(X \geq 11)=1-0.9829=0.0171$	M1
	Critical region is $(X \leq 2) \cup(X \geq 11)$	A1 A1
(b)	Significance level $=0.0355+0.0171,=0.0526$ or 5.26%	M1 A1 (2)
(c)	Insufficient evidence to reject $\mathrm{H}_{0} \mathbf{O r}$ sufficient evidence to accept $\mathrm{H}_{0} /$ not significant $x=3$ (or the value) is not in the critical region or $0.1071>0.025$ Do not allow inconsistent comments	B1 ft B1 ft (2)

Question Number	Scheme	Marks
1 (a) (b)	e.g. Sort complete. $1^{\text {st }}$ choice $\left[\frac{1+8}{2}\right] \rightarrow 5$ Lauren reject right $2^{\text {nd }}$ choice $\left[\frac{1+4}{2}\right] \rightarrow 3$ John reject right $3^{\text {rd }}$ choice $\left[\frac{1+2}{2}\right] \rightarrow 2$ Imogen reject right $4^{\text {th }}$ choice 1 Hannah reject List now empty so Hugo not in list Notes: (a) 1M1: quick sort, pivots, p , chosen and two sublists one $<\mathrm{p}$ one $>\mathrm{p}$. If choosing 1 pivot per iteration only M1 only. 1A1: first pass correct and next pivots chosen correctly/consistently. 2A1ft: second pass correct, next pivots correctly/consistently chosen. 3A1ft: third pass correct, next pivots correctly/consistently chosen. 4A1: all correct, cso. (b) 1M1: binary search, choosing pivot, rejecting half list. If using unsorted list, M0. Accept choice of K for M1 only. 1A1: first pass correct, condone 'sticky'pivot here, bod. 2 A 1 ft : second pass correct, pivot rejected. 3A1: cso.	M1 A1 A1ft A1ft A1cso (5) M1 A1 A1ft A1 (4) [9]

Question Number	Scheme	Marks
3 (a) (b)	$1^{\text {st }}$ dummy - D depends on B only, but E and F depend on B and C $2^{\text {nd }}$ dummy - G and H both must be able to be described uniquely in terms of the events at each end. Notes: (a) 1M1: one start and A to C and one of D, E or F drawn correctly 1A1: $1^{\text {st }}$ dummy (+arrow) and D, E and F drawn correctly 2A1: G, H, I and J drawn in correct place 3A1: second dummy (+arrow) drawn in a correct place 4A1: cso. all arrows and one finish. (b) 1B1: cao, but B, C, D, E and/or F referred to, generous 2B1: cao, but generous.	M1 A1 A1 A1 A1 (5) B1 B1 (2) [7]

Question Number	Scheme	Marks
4 (a) (b) (c)	Alternating path $\mathrm{B}-3=\mathrm{A}-5$ change status $\mathrm{B}=3-\mathrm{A}=5$ $\mathrm{A}=5 \quad \mathrm{~B}=3 \quad \mathrm{C}=2 \quad \mathrm{D}=1 \quad \mathrm{E}=6 \quad \mathrm{~F} \text { unmatched }$ e.g. C is the only person able to do 2 and the only person able to do 4 . Or D, E and F between them can only be allocated to 1 and 6 . Alternating path $\mathrm{F}-6=\mathrm{E}-1=\mathrm{D}-2=\mathrm{C}-4$ $\text { change status } \quad \mathrm{F}=6-\mathrm{E}=1-\mathrm{D}=2-\mathrm{C}=4$ $\mathrm{A}=5 \quad \mathrm{~B}=3 \quad \mathrm{C}=4 \quad \mathrm{D}=2 \quad \mathrm{E}=1 \quad \mathrm{~F}=6$ Notes: (a) 1M1: Path from B to 5 . 1A1: Correct path including change status 2A1: CAO my matching, may be drawn but if so 5 lines only and clear. (b) 1B1: Close, a correct relevant, productive statement bod generous 2B1: A Good clear answer generous (c) 1M1: Path from F to 4 . No ft. 1A1: Correct path penalise lack of change status once only 2A1: CAO may be drawn but if so 6 lines only and clear	M1 A1 A1 (3) B2, 1, 0 (2) M1 A1 A1 (3) [8]

Question Number	Scheme	Marks
(a) (b)	Odd vertices C, D, E, G $\begin{aligned} & \mathrm{CD}+\mathrm{EG}=17+19=36 \leftarrow \\ & \mathrm{CE}+\mathrm{DG}=12+25=37 \\ & \mathrm{CG}+\mathrm{DE}=28+13=41 \end{aligned}$ Length $=543+36=579(\mathrm{~km})$ CE (12) is the shortest So repeat CE (12) Start and finish at D and G Notes: (a) 1B1: cao (may be implicit) 1M1: Three pairings of their four odd nodes 1A1: one row correct 2A1: all correct 3A1ft: $543+$ their least $=$ a number. Condone lack of km (b) 1 M 1 ft : Identifies their shortest from a choice of at least 2 rows. 1 A 1 ft : indicates their intent to repeat shortest. 2A1ft: correct for their least.	B1 M1 A1 A1 A1ft (5) M1 A1ft A1ft (3)

Question Number	Scheme	Marks
(a) (b)	Shortest route: A B C E G H Length: 156 (km) New route: A B E G H Length: 165 (km) Notes: (a) 1M1: Dijkstra's algorithm, small replacing larger in at least one of the sets of working values at $\mathrm{C}, \mathrm{E}, \mathrm{G}$ or H 1A1: Values correct at vertices A to E. 2 A 1 ft : Values correct at vertices F to H , penalise order only once. 3A1: cao 4A1ft: 156 ft (b) 1B1: cao ABEGH 2B1: 165 Special Case Accept 166 if ABDGH listed as the path.	M1 A1 A1ft A1 A1ft (5) B1 B1 (2) [7]

Question

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA020941 January 2009

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

