Half Term Test - Practise Paper

1. Factorise using completing the square (a) $x^{2}-6 x-4$ (b) $x^{2}+3 x+5$
2. Solve using completing the square $2 x^{2}-8 x+7=0$
3. Find the co-ordinates of the points at which the line with equation $x+y=9$ intersects the curve with equation $x^{2}-3 x y+2 y^{2}=0$.
4. Simplify $81^{-\frac{1}{2}} \times 27^{\frac{2}{3}}$
5. Given that $f(x)=x^{2}-3 x-10$ and $g(x)=2 x-1$. Find
a. $f(0)$
b. $g(5)$
c. x if $g(x)=9$
d. $g f(x)$ in its simplest terms
e. $f(x)=0$
6. Draw a sketch of the graph of $y=f(x)$ when $f(x)=x^{2}$. On the same graph sketch the curves $y=f(x-3)$ and $y=-f(x-3)$
7. Draw a sketch of the graph of $y=f(x)$ where $f(x)=\sin x$, for $0 \leq x \leq 360$. On the same graph sketch the curve $y=f(2 x)$.
8. Use the factor theorem to solve the equation $x^{3}+2 x^{2}-9 x-18=0$
9. When the function $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}+\mathrm{px}^{2}+\mathrm{qx}+6$ is divided by $\mathrm{x}+1$ the remainder is 12 . When divided by $x-1$ the remainder is -6 .
a. Find the values of p and q .
b. Show that $f(1 / 2)=0$ and hence write $f(x)$ as the product of three linear factors.
10. The four points A, B, C and D lie on the circumference of the circle centre O. The tangent $P Q$ touches the circle at A.

Diagram not drawn to scale.
Given that $\widehat{C O A}=128^{\circ}$ and $\widehat{D A P}=52^{\circ}$ find the size of each of the following angles. Give reasons for your answers.
(a) $\widehat{C B A}$
\qquad
\qquad
\qquad
\qquad
(b) $\widehat{D O A}$
\qquad
\qquad
\qquad

