Surname
Other Names

Centre Number	Candidate Number

GCSE

4370/05

MATHEMATICS - LINEAR
 PAPER 1
 HIGHER TIER

A.M. WEDNESDAY, 4 November 2015

2 hours

CALCULATORS ARE NOT TO BE USED FOR THIS PAPER

ADDITIONAL MATERIALS

A ruler, a protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all the questions in the spaces provided.
Take π as 3.14 .

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.
Unless stated, diagrams are not drawn to scale.
Scale drawing solutions will not be acceptable where you are asked to calculate.
The number of marks is given in brackets at the end of each question or part-question.
You are reminded that assessment will take into account the quality of written communication (including mathematical

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	6	
2.	2	
3.	5	
4.	9	
5.	4	
6.	4	
7.	9	
8.	4	
9.	5	
10.	8	
11.	7	
12.	6	
13.	6	
14.	4	
15.	5	
16.	5	
17.	4	
18.	7	
Total	100	

Formula List

Area of trapezium $=\frac{1}{2}(a+b) h$

Volume of prism $=$ area of cross-section \times length

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

In any triangle $A B C$
Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$
where $a \neq 0$ are given by

$$
x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}
$$

Examiner
[3]

1. (a) Solve $8 x-9=21+5 x$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Simplify $6 e-4 f-10 e-f$.
\qquad
\qquad
(c) Solve $\frac{x}{7}=14$.
2. Sanej throws two fair dice. He scores a double one.

Calculate the probability of not scoring a double one when two fair dice are thrown.
\qquad
\qquad
\qquad
\qquad
\qquad
3. Idris comes from a very large family.

He has many relatives, all of whom live in Canada, Japan or Wales.
$\frac{1}{5}$ of his relatives live in Canada, $\frac{3}{8}$ of his relatives live in Japan.
All 34 of his other relatives live in Wales.
How many relatives does Idris have altogether?
\qquad
4. You will be assessed on the quality of your written communication in this question.

The cost of buying electricity from North Electricity is as follows:

- Standing charge 28 p per day
- Energy charge 14 p per kWh used
- VAT 5\% payable on total charges

Evan uses 850 kWh of electricity during a period of 90 days.
Calculate Evan's total bill for buying electricity from North Electricity.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
5. The diagram shows a sail.

The top part of the sail is a triangle with perpendicular height x metres.
The bottom part of the sail is a trapezium with perpendicular height x metres.
The area of the triangle is $12 \mathrm{~m}^{2}$.

Diagram not drawn to scale

Calculate the area of the trapezium.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
6. Barney has two tiles.

One tile is in the shape of a regular 10-sided polygon, the other tile is a regular hexagon.
He decides to try to fit the tiles together so that one vertex of each tile meet at the point A as shown in the diagram below.

Show, by calculation, that the angle x will be greater than 90°. You must show all your working.
\qquad
\qquad
\qquad

[^0]What is your favourite sport in this list?

The results are summarised in the table below.

Favourite sports						
	Football	Rugby	Swimming	Cycling		
Year					Total	
7	45	38	23	15	121	
8	32	64	14	28	138	
9	26	46	34	27	133	
Total	103	148	71	70	392	

In each of the following parts, a pupil is selected at random.
(a) Calculate the probability of selecting a pupil whose favourite sport is swimming.
\qquad
\qquad
(b) Calculate the probability of selecting a Year 8 pupil.
\qquad
\qquad
(c) The pupil selected is in Year 8.

Calculate the probability that this pupil's favourite sport is cycling.
(d) The favourite sport of the selected pupil is football.
\qquad
\qquad
(e) The pupil selected is not in Year 7.

What is the probability that this pupil's favourite sport is not football?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^1]
(b) Do each of the points listed in the table below lie within the region? Complete the table by stating yes or no.

Point with coordinates	Lies within the region, yes or no?
$(2,1 \cdot 5)$	
$(2,2)$	
$(2,2 \cdot 5)$	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Find the 20th term of the sequence with nth term $4 n-n^{2}$.
\qquad
\qquad
\qquad
\qquad
(c) Find the nth term of the sequence $2,8,18,32,50,72 \ldots$
\qquad
\qquad
\qquad
\qquad
10. (a) Expand and simplify $(2 x+7)(3 x-1)$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Simplify $\frac{(x+3)^{12}}{(x+3)^{4}}$.
\qquad
\qquad
\qquad
\qquad
(c) It is known that $y=k x^{2}$, and that when $x=3, y=-36$. Calculate the value of y when $x=5$.
11. The table below shows some values of $y=x^{3}-3 x+4$ for values of x from -3 to 3 .

x	-3	-2	-1	0	1	2	3
$y=x^{3}-3 x+4$	-14		6	4	2	6	

(a) Complete the table above.
(b) On the graph paper below draw the graph of $y=x^{3}-3 x+4$ for the values of x from -3 to 3 .

(c) Use your graph to write down the coordinates of the two points where the gradient is zero.
\qquad
(d) Use your graph to write down the solution of the equation $x^{3}-3 x+4=0$.
\qquad
12. Tomos, Gwen and Jen visit the same fruit stall. Tomos buys 4 kg of raspberries and 5 kg of blackcurrants for a total cost of $£ 38$. Gwen buys 6 kg of raspberries and 3 kg of blackcurrants for a total cost of $£ 39$. Use an algebraic method to find how much Jen pays in total for 5 kg of raspberries and 7 kg of blackcurrants.
13. (a) Make h the subject of the formula.

Give your answer in its simplest form.

$$
5 p+7 h=11 q+3 p
$$

(b) Make f the subject of the formula.

$$
e f-d=k f+t
$$

14. (a)

Calculate the size of the angle x in the diagram above.

$$
x=\ldots \ldots .
$$

(b) The diagram below shows a circle with centre O.
A, B and C are points on the circumference of the circle.
The tangent, $P A H$, touches the circle at A.
$O B H$ is a straight line.

Given that $A \widehat{H B}=52^{\circ}$, calculate $A \widehat{C B}$.
You must show your working.
\qquad
\qquad
\qquad
\qquad
15. (a) Evaluate 266°.

Examiner
(b) Express $8^{-\frac{2}{3}}$ as a fraction.
(c) Simplify $\sqrt{288}$.

Write your answer in surd form.
16. (a) The diagram below shows a sketch of $y=f(x)$.

On the same diagram, sketch the curve $y=f(x+3)$.
Mark clearly the coordinates of the point where this curve touches an axis.

(b) The diagram below shows another sketch of $y=f(x)$. On the same diagram below

- sketch the curve $y=-f(x)$, then
- sketch the curve $y=-f(x)+2$.

Mark clearly the coordinates of the point where the curve $y=-f(x)+2$ meets the y-axis.

17. One Saturday, Ben and Sara each record the distance and time of their cycle rides.

In 2 hours, Ben cycles 44 km , measured correct to the nearest 2 km . In 3 hours, Sara cycles 40 km , measured correct to the nearest 2 km .

Calculate, in km/h, the greatest possible difference between Ben's average speed and Sara's average speed.
\qquad
18. Solve the following equation.

$$
\frac{8}{2 x-1}+\frac{5 x+9}{3 x+1}=4
$$

[^0]: Examiner
 7. In a survey, a total of 392 pupils were chosen from years 7, 8 and 9 and asked the following question.

[^1]: Examiner
 8. (a) On the graph paper provided, draw the region which satisfies all of the following inequalities.

 $$
 \begin{aligned}
 x+y & \geqslant 3 \\
 y & \leqslant-2 x+6 \\
 y & \leqslant 2
 \end{aligned}
 $$

 Make sure that you clearly indicate the region that represents your answer.

