The Discriminant of a Quadratic Function

The discriminant is the name given to the expression that appears under the square root sign in the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

The discriminant is given by $b^{2}-4 a c$. This tells you about the 'nature' of the roots of a quadratic equation.
$\underline{\mathrm{NB}}$ - The roots of a quadratic equation $=$ the solutions of a quadratic equation $=$ where the graph of the quadratic crosses the \boldsymbol{x}-axis.

If the value of the discriminant is positive, ie $b^{2}-4 a c>0$, then there will be two real roots and the graph will look like:

If the value of the discriminant is zero, ie $b^{2}-4 a c \leq 0$, then there will be one real root (also called repeated roots) and the graph will look like:

graph touches tho
x-axis

If the value of the discriminant is negative, ie $b^{2}-4 a c<0$, then there will be no real roots (the roots are complex - more if you do A Level Further Maths!) and the graph will look like:

graph doernit Fouch/cosos
x avis.

Examples

Determine the nature of the roots of the following quadratic functions and sketch their graphs:

1. $y=x^{2}+6 x+5$
2. $y=x^{2}-2 x+1$
3. $y=x^{2}-3 x+10$
4. $y=-x^{2}+4 x-5$
5. Find the vane of k for which $\mathrm{x}^{2}+\mathrm{kx}+3=0$ has edistinet real roots.

Ef $\quad y=x^{2}+6 x+5$
$b^{2}-4 a c \quad 6^{2}-4 \times 1 \times 5=36-20=16>0 \therefore$ two real roots consen y asts when $x=0 \quad y=0+0+5=5 \quad(0,5)$
conos x axts wher $y=0$

$$
\begin{aligned}
& x^{2}+6 x+5=0 \\
& (x+5)(x+1)=0 \\
& x=-1, x=-1 \quad(-1,0)+(-5,0)
\end{aligned}
$$

x^{2} is tue. $\because V$

ay2, $\quad y=x^{2}-2 x+1$
$b^{2}-4 a c \quad(-2)^{2}-4 x|x|=4-4=0 \quad \therefore$ ore roost
crosss y aus wher $x=0 \quad y=1 \quad(0,1)$
canses x axis whe $y=0 \quad x^{2}-2 x+1=0$

$$
(x-1)(x-1)=0
$$

$$
x=1
$$

x^{2} is tue. $\cdot V$

eg3 $y=x^{2}-3 x+10$

$$
b^{2}-4 a c:(-3)^{2}-4 \times 1 \times 10=9-40=-31<0 \ldots \text { noreal rol5 }
$$

croses y axis when $x=0 \quad y=10 \quad(0,10)$
dorith cans x axi
$x^{2}+0 \cdot \therefore V$

eq4 $\quad y=-x^{2}+4 x-5$
$b^{2}-4 a c \quad 4^{2}-4 x-1 x-5=16-20=-4<0$ ins enal
carms gaut whe $x=0 \quad y=-5 \quad(0,-5)$
$-V e x^{2} \div \Lambda$

2e) $x^{2}+k x+3$
for two rooks $b^{2}-4 a c$ 些 0

$$
\begin{gathered}
k^{2}-4 \times 1 \times 350 \\
k^{2}-12=0 \\
k=12 \\
k= \pm \sqrt{2} \\
k=2 \\
k=\sqrt{3}
\end{gathered}
$$

