Volumes of Cones a $S_{p f i \in n \in J)}$, You are given on Front page of exam: Volume of sphere $=\frac{4}{3} \pi r^{3}$
Paper Volume of Cone $=\frac{1}{3} \pi r^{2} \mathrm{~h}$
(1)

The volume of a sphere is $296 \mathrm{~cm}^{3}$. Calculate the radius of the sphere, giving your answer to an
appropriate degree of accuracy. $V=\frac{4}{3} \pi r^{3}$

$$
296 \times 3=4 \pi r
$$

$$
\begin{aligned}
& r^{3}=\frac{296 \times 3}{4 \pi} \\
& r^{=}=\sqrt[3]{\frac{2963}{4 \pi}}=8.9 \mathrm{~cm}
\end{aligned}
$$

(2) The volume of a hemisphere is 7 zen. .calculate he er radius of the hemisphere.

Vol of hemisphere $=7 \pi$
So va of splue $=7 \pi \times 2=14 \pi$

$$
\begin{aligned}
& 14 \pi=\frac{4}{3} \pi r^{3} \\
& 14 \pi \times 3=4 \pi r^{3} \\
& r^{3}=\frac{14 \pi \times 3}{4 \%}=10.5 \\
& r=\sqrt[3]{10.5}=2.2 \mathrm{~cm}
\end{aligned}
$$

(3)

A hemisphere is attached to a cone to make a solid as shown below.

Diagram not drawn to scale.
The hemisphere has radius 1.8 cm . The cone has base radius 1.8 cm and height 5.1 cm . Calculate the volume of the solid.

$$
\text { Vol of sphere }=\frac{4}{3} \pi \times 1.8^{3}=24.4
$$

Val of hemisphere $=24.4 \div 2=12.2 \mathrm{~cm}^{3}$
Vs of core $=\frac{1}{3} \pi \times 1.8^{2} \times 5.1=17.3 \mathrm{~cm}^{3}$
\because Share of solid $=17 \cdot 3+12 \cdot 2=29 \cdot 5 \mathrm{~cm}^{3}$
\qquad
\qquad

