10. (a) On the same axes sketch the graphs of the curves with equations
(i) $y=x^{2}(x-2)$,
(ii) $y=x(6-x)$,
and indicate on your sketches the coordinates of all the points where the curves cross the x-axis.
(b) Use algebra to find the coordinates of the points where the graphs intersect.
11.

Figure 1
Figure 1 shows a sketch of the curve C with equation $y=\mathrm{f}(x)$.
The curve C passes through the origin and through $(6,0)$.
The curve C has a minimum at the point $(3,-1)$.
On separate diagrams, sketch the curve with equation
(a) $y=\mathrm{f}(2 x)$,
(b) $y=-\mathrm{f}(x)$,
(c) $y=\mathrm{f}(x+p)$, where p is a constant and $0<p<3$.

On each diagram show the coordinates of any points where the curve intersects the x-axis and of any minimum or maximum points.
3. On separate diagrams, sketch the graphs of
(a) $y=(x+3)^{2}$,
(b) $y=(x+3)^{2}+k$, where k is a positive constant.

Show on each sketch the coordinates of each point at which the graph meets the axes.

Figure 1
Figure 1 shows a sketch of the curve with equation $y=\mathrm{f}(x)$. The curve passes through the point $(0,7)$ and has a minimum point at $(7,0)$.

On separate diagrams, sketch the curve with equation
(a) $y=\mathrm{f}(x)+3$,
(b) $y=\mathrm{f}(2 x)$.
(2)

On each diagram, show clearly the coordinates of the minimum point and the coordinates of the point at which the curve crosses the y-axis.
6. The curve C has equation $y=\frac{3}{x}$ and the line l has equation $y=2 x+5$.
(a) On the axes below, sketch the graphs of C and l, indicating clearly the coordinates of any intersections with the axes.
(b) Find the coordinates of the points of intersection of C and l.

Figure 1
Figure 1 shows a sketch of the curve with equation $y=\mathrm{f}(x)$. The curve crosses the x-axis at the points $(1,0)$ and $(4,0)$. The maximum point on the curve is $(2,5)$.
In separate diagrams sketch the curves with the following equations.
On each diagram show clearly the coordinates of the maximum point and of each point at which the curve crosses the x-axis.
(a) $y=2 \mathrm{f}(x)$,
(b) $y=\mathrm{f}(-x)$.
(3)

The maximum point on the curve with equation $y=\mathrm{f}(x+a)$ is on the y-axis.
(c) Write down the value of the constant a.
(1)
10. The curve C has equation

$$
y=(x+3)(x-1)^{2} .
$$

(a) Sketch C showing clearly the coordinates of the points where the curve meets the coordinate axes.
(4)
(b) Show that the equation of C can be written in the form

$$
y=x^{3}+x^{2}-5 x+k
$$

where k is a positive integer, and state the value of k.

There are two points on C where the gradient of the tangent to C is equal to 3 .
(c) Find the x-coordinates of these two points.
5.

Figure 1
Figure 1 shows a sketch of the curve C with equation $y=\mathrm{f}(x)$. There is a maximum at $(0,0)$, a minimum at $(2,-1)$ and C passes through $(3,0)$.

On separate diagrams sketch the curve with equation
(a) $y=\mathrm{f}(x+3)$,
(b) $y=\mathrm{f}(-x)$.

On each diagram show clearly the coordinates of the maximum point, the minimum point and any points of intersection with the x-axis.
10.

Figure 2
Figure 2 shows a sketch of the curve C with equation

$$
y=2-\frac{1}{x}, \quad x \neq 0
$$

The curve crosses the x-axis at the point A.
(a) Find the coordinates of A.
(b) Show that the equation of the normal to C at A can be written as

$$
2 x+8 y-1=0
$$

The normal to C at A meets C again at the point B, as shown in Figure 2 .
(c) Find the coordinates of B.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3. Given that

$$
\mathrm{f}(x)=\frac{1}{x}, \quad x \neq 0
$$

(a) sketch the graph of $y=\mathrm{f}(x)+3$ and state the equations of the asymptotes.
(b) Find the coordinates of the point where $y=\mathrm{f}(x)+3$ crosses a coordinate axis.

