10. (a) On the same axes sketch the graphs of the curves with equations

(i)
$$y = x^2(x-2)$$
,
(ii) $y = x(6-x)$, (3)

and indicate on your sketches the coordinates of all the points where the curves cross the *x*-axis.

(b) Use algebra to find the coordinates of the points where the graphs intersect.

(7)

(3)

Leave blank

Figure 1

Figure 1 shows a sketch of the curve *C* with equation y = f(x). The curve *C* passes through the origin and through (6, 0). The curve *C* has a minimum at the point (3, -1).

On separate diagrams, sketch the curve with equation

(a)
$$y = f(2x)$$
, (3)

(b)
$$y = -f(x)$$
, (2)

(c) y = f(x + p), where p is a constant and 0 .

On each diagram show the coordinates of any points where the curve intersects the *x*-axis and of any minimum or maximum points.

8.

Leave blank

(3)

(4)

Leave blank **10.** The curve *C* has equation $y = (x+3)(x-1)^2$. (a) Sketch C showing clearly the coordinates of the points where the curve meets the coordinate axes. (4) (b) Show that the equation of C can be written in the form $y = x^3 + x^2 - 5x + k,$ where k is a positive integer, and state the value of k. (2) There are two points on C where the gradient of the tangent to C is equal to 3. (c) Find the *x*-coordinates of these two points. (6)

Leave

Given that	$\mathbf{f}(x)=\frac{1}{x},$	$x \neq 0$,		
(a) sketch the graph of			he ogymntator	
(a) sketch the graph of	y = f(x) + 5 and stat	e the equations of t	ne asymptotes.	(4)
(b) Find the coordinate	es of the point where	v = f(x) + 3 crosses	s a coordinate axis.	
	×	• • • •		(2)
· · · · · · · · · · · · · · · · · · ·				
			·····	
	· · · · · · · · · · · · · · · · · · ·			
······				
·····	···· · · · · · · · · · · · · · · · · ·			• • • •
				······································
the design of the second se			· · · · · · · · · · · · · · · · · · ·	

1 £

