C3

Chapter 5 Transforming graphs of functions

Question Number	Scheme		Marks
Q5	$y=\ln \|x\|$	Right-hand branch in quadrants 4 and 1. Correct shape.	B1
		Left-hand branch in quadrants 2 and 3 . Correct shape. Completely correct sketch and both $(-1,\{0\})$ and $(1,\{0\})$	B1
			(3) [3]

Question Number	Scheme	Marks
6. (a) (i) (ii) (b) (c) (d)	$(3,4)$ $\begin{equation*} (6,-8) \tag{3,4} \end{equation*}$ $\mathrm{f}(x)=(x-3)^{2}-4 \text { or } \mathrm{f}(x)=x^{2}-6 x+5$ Either: The function f is a many-one \{mapping \}. Or: The function f is not a one-one \{mapping\}. (b) B1: Correct shape for $x \geqslant 0$, with the curve meeting the positive y-axis and the turning point is found below the x-axis. (providing candidate does not copy the whole of the original curve and adds nothing else to their sketch.). B1: Curve is symmetrical about the y-axis or correct shape of curve for $x<0$. Note: The first two B1B1 can only be awarded if the curve has the correct shape, with a cusp on the positive y-axis and with both turning points located in the correct quadrants. Otherwise award B1B0. B1: Correct turning points of $(-3,-4)$ and $(3,-4)$. Also, $(\{0\}, 5)$ is marked where the graph cuts through the y-axis. Allow $(5,0)$ rather than $(0,5)$ if marked in the "correct" place on the y-axis. (c) M1: Either states $\mathrm{f}(x)$ in the form $(x \pm \alpha)^{2} \pm \beta ; \quad \alpha, \beta \neq 0$ Or uses a complete method on $\mathrm{f}(x)=x^{2}+a x+b$, with $\mathrm{f}(0)=5$ and $\mathrm{f}(3)=-4$ to find both a and b. A1: Either $(x-3)^{2}-4$ or $x^{2}-6 x+5$ (d) B1: Or: The inverse is a one-many \{mapping and not a function\}. Or: Because $\mathrm{f}(0)=5$ and also $\mathrm{f}(6)=5$. Or: One y-coordinate has 2 corresponding x-coordinates \{and therefore cannot have an inverse $\}$.	B1 B1 B1 B1 (4) B1 B1 B1 (3) M1A1 (2) B1 (1) [10]

5. (a)	$\begin{aligned} & \text { Finding } g(4)=k \text { and } f(k)=\ldots \text { or } f g(x)=\ln \left(\frac{4}{x-3}-1\right) \\ & {[f(2)=\ln (2 \times 2-1) \quad f g(4)=\ln (4-1)]} \end{aligned}$		M1 A1	
(b)	$\begin{gathered} y=\ln (2 x-1) \Rightarrow \mathrm{e}^{y}=2 x-1 \quad \text { or } e^{x}=2 y-1 \\ \mathrm{f}^{-1}(x)=\frac{1}{2}\left(\mathrm{e}^{x}+1\right) \quad \text { Allow } y=\frac{1}{2}\left(\mathrm{e}^{x}+1\right) \end{gathered}$ Domain $x \in \mathfrak{R} \quad[$ Allow \mathfrak{R}, all reals, $(-\infty, \infty)$] independent			(4)
(c)		Shape, and x-axis should appear to be asymptote Equation $x=3$ needed, may see in diagram (ignore others) Intercept ($0, \frac{2}{3}$) no other, accept $y=2 / 3$ (0.67) or on graph	B1 B1 in B1 in	(3)
d)	$\frac{2}{x-3}=3 \quad \Rightarrow x=3 \frac{2}{3} \quad$ or exact equiv. $\frac{2}{x-3}=-3, \Rightarrow x=2 \frac{1}{3} \quad$ or exact equiv. Note: $2=3(x+3)$ or $2=3(-x-3)$ o.e. is M0A0 Squaring to quadratic ($9 x^{2}-54 x+77=0$) and solving M1; B1A1		B1 M1	
Alt:				

