C3 Chapter 5 Transforming graphs of functions

Question Number	Scheme	Marks
4.	$(a) \qquad \qquad y \qquad \qquad (5,4)$ $\bullet \qquad \qquad (5,4)$ $\bullet \qquad \qquad x$	
	Shape $(5,4)$ (b) For the purpose of marking this paper, the graph is identical to (a) Shape $(5,4)$ (c)	B1 B1 B1 (3) B1 B1 (3)
	(4,8) (-6,-8)	
	General shape – unchanged Translation to left (4,8)	B1 B1 B1
	(-6, -8) In all parts of this question ignore any drawing outside the domains shown in the diagrams above.	B1 (4) [10]

Question Number	Scheme	Mark	⟨S
Q6 (i)	y = f(-x) + 1 Shape of		
	and must have a maximum in quadrant 2 and a minimum in quadrant 1 or on the positive y -axis.	B1	
	Either $(\{0\}, 2)$ or $A'(-2, 4)$	B1	
	Both $(\{0\}, 2)$ and $A'(-2, 4)$	B1	
	x		(3)
(ii)	$y = f(x+2) + 3$ $y \uparrow$		
	$A'(\{0\}, 6)$ Any translation of the original curve.	B1	
	The <i>translated maximum</i> has either x-coordinate of 0 (can be implied) or y-coordinate of 6.	B1	
	The translated curve has maximum $(\{0\}, 6)$ and is in the correct position on the Cartesian axes.	B1	
	O x		
			(3)
(iii)	y = 2f(2x) $A'(1, 6)$ Shape of		
	with a minimum in quadrant 2 and a maximum in quadrant 1.	B1	
	Either $(\{0\}, 2)$ or $A'(1, 6)$	B1	
	Both $(\{0\}, 2)$ and $A'(1, 6)$	B1	
	${O}$		(3)
			(3) [9]

Question Number		
Q5	$y = \ln x $	
	Right-hand branch in quadrants 4 and 1. Correct shape.	B1
	Left-hand branch in quadrants 2 and 3. Correct shape.	B1
	Completely correct sketch and both $\left(-1,\{0\}\right)$ and $\left(1,\{0\}\right)$	B1
		(3)
		[3]

Question Number	Scheme	Marks
6. (a)	$y = \frac{3-2x}{x-5} \Rightarrow y(x-5) = 3-2x$ Attempt to make x (or swapped y) the subject	M1
	xy - 5y = 3 - 2x $\Rightarrow xy + 2x = 3 + 5y \Rightarrow x(y + 2) = 3 + 5y$ Collect x terms together and factorise.	M1
	$\Rightarrow x = \frac{3+5y}{y+2} \therefore f^{-1}(x) = \frac{3+5x}{x+2}$ $\frac{3+5x}{x+2}$	A1 oe (3)
(b)	Range of g is $-9 \le g(x) \le 4$ or $-9 \le y \le 4$ Correct Range	B1 (1)
(c)	Deduces that $g(2)$ is 0. Seen or implied.	M1
	g g(2)= g (0) = -6 , from sketch.	A1 (2)
(d)	fg(8) = f(4) Correct order g followed by f	M1
	$=\frac{3-4(2)}{4-5}=\frac{-5}{-1}=\underline{5}$	A1 (2)
(e)(i)	Correct shape	ВІ
	$(2,\{0\}),(\{0\},6)$	В1
(e)(ii)	Correct shape	B1
	Graph goes through $(\{0\}, 2)$ and $(-6, \{0\})$ which are marked.	B1 (4)
(f)	Domain of g^{-1} is $-9 \le x \le 4$ Either correct answer or a follow through from part (b) answer	B1√ (1) [13]

Question Number	Scheme	Marks
3 (a)	V shape vertex on y axis &both branches of graph cross x axis x y co-ordinate of R is -6	B1 B1
	(0,-6)	(3)
(b)	(-4,3) W shape 2 vertices on the negative x axis. W in both quad 1 & quad 2. $R'=(-4,3)$	B1 B1dep B1 (3)
		6 Marks

Question Number	Scheme	Marks	
6. (a) (i) (ii)	(3,4) $(6,-8)$	B1 B1 B1 B1	(4)
(b)	y f 5 5 5 x (3, -4)	B1 B1 B1	(4)
(c)	$f(x) = (x-3)^2 - 4$ or $f(x) = x^2 - 6x + 5$	M1A1	(3)
(d)	Either: The function f is a many-one {mapping}. Or: The function f is not a one-one {mapping}.	B1 ((2) (1) [0]
	(b) B1: Correct shape for $x \ge 0$, with the curve meeting the positive y-axis and the turning point is found below the x-axis. (providing candidate does not copy the whole of the original curve and adds nothing else to their sketch.) B1: Curve is symmetrical about the y-axis or correct shape of curve for $x < 0$. Note: The first two B1B1 can only be awarded if the curve has the correct shape, with a cusp on the positive y-axis and with both turning points located in the correct quadrants. Otherwise award B1B0. B1: Correct turning points of $(-3, -4)$ and $(3, -4)$. Also, $(\{0\}, 5)$ is marked where the graph cuts through the y-axis. Allow $(5, 0)$ rather than $(0, 5)$ if marked in the "correct" place on the y-axis. (c) M1: Either states $f(x)$ in the form $(x \pm \alpha)^2 \pm \beta$; $\alpha, \beta \neq 0$ Or uses a complete method on $f(x) = x^2 + ax + b$, with $f(0) = 5$ and $f(3) = -4$ to find both a and b. A1: Either $(x - 3)^2 - 4$ or $(x)^2 - 6x + 5$ (d) B1: Or: The inverse is a one-many {mapping and not a function}. Or: Because $f(0) = 5$ and also $f(6) = 5$. Or: One y-coordinate has 2 corresponding x-coordinates {and therefore cannot have an inverse}.		

Question Number	Scheme		
3.	(a) $y \blacktriangle$ Shape Vertices correctly placed	B1 B1	(2)
	(b) $y $	B1 B1	(2)
	Q:(0,1) R:(1,0)	B1 B1	(3)
	(d) $x > -1$; $2-x-1 = \frac{1}{2}x$	M1 A1	
	Leading to $x = \frac{2}{3}$ $x < -1: \qquad 2 + x + 1 - \frac{1}{2}x$	A1 M1	
	$x < -1; 2 + x + 1 = \frac{1}{2}x$ Leading to $x = -6$	A1	(5)
			[12]

5. (a)	Finding g(4) = k and f(k) = or $fg(x) = \ln\left(\frac{4}{x-3}\right)$	-1)	M1	
	$[f(2) = \ln(2x2 - 1)$ $fg(4) = \ln(4 - 1)]$	$= \ln 3$	A1	(2)
(b)	$y = \ln(2x-1) \implies e^y = 2x-1 \text{ or } e^x = 2y-1$		M1, A1	
	$f^{-1}(x) = \frac{1}{2}(e^x + 1)$ Allow $y = \frac{1}{2}(e^x + 1)$		A1	
	Domain $x \in \Re$ [Allow \Re , all reals, $(-\infty, \infty)$] independent	B1	(4)
(c)	γ ↑	Shape, and <i>x</i> -axis should appear to be asymptote	B1	
	$\frac{2}{3}$ $x = 3$	Equation <i>x</i> = 3 needed, may see in diagram (ignore others)	B1 ind.	
	$\begin{array}{c c} & & & \\ \hline & & \\ \hline & & & \\ \hline & \\ \hline & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & & \\ \hline \\ \hline$	Intercept $(0, \frac{2}{3})$ no other; accept $y = \frac{2}{3}$ (0.67) or on graph	B1 ind	(3)
(d)	r=3		B1	
	$\frac{2}{x-3} = -3$, $\Rightarrow x = 2\frac{1}{3}$ or exact equiv. Note: $2 = 3(x+3)$ or $2 = 3(-x-3)$ o.e. is M0A0		M1, A1	(3)
Alt:	Squaring to quadratic $(9x^2 - 54x + 77 = 0)$ and sol	ving M1; B1A1	(12 ma	arks)

Question Number	Scheme	Marks
Q5 (a)	Curve retains shape when $x > \frac{1}{2} \ln k$	B1
	Curve reflects through the <i>x</i> -axis when $x < \frac{1}{2} \ln k$	B1
	O $(\frac{1}{2}\ln k, 0)$ x $(0, k-1)$ and $(\frac{1}{2}\ln k, 0)$ marked in the correct positions.	B1 (3)
(b)	Correct shape of curve. The curve should be contained in quadrants 1, 2 and 3 (Ignore asymptote) $(0, \frac{1}{2} \ln k)$	B1
	$(1-k,0) \text{ and } (0,\frac{1}{2}\ln k)$	B1
(c)	Range of f: $\underline{f(x) > -k}$ or $\underline{y > -k}$ or $\underline{(-k, \infty)}$ Either $\underline{f(x) > -k}$ or $\underline{y > -k}$ or $\underline{(-k, \infty)}$ or $\underline{f > -k}$ or $\underline{Range > -k}$.	(2) B1
	$y = e^{2x} - k \implies y + k = e^{2x}$ Attempt to make x (or swapped y) the subject	(1) M1
	$\Rightarrow \ln(y+k) = 2x$ $\Rightarrow \frac{1}{2}\ln(y+k) = x$ Makes e^{2x} the subject and takes ln of both sides	M1
	Hence $f^{-1}(x) = \frac{1}{2}\ln(x+k)$ or $\frac{1}{2}\ln(x+k)$ or $\frac{1}{2}\ln(x+k)$	<u>A1</u> cao (3)
(e)	Either $\underline{x>-k}$ or $\underline{(-k,\infty)}$ or Domain: $\underline{x>-k}$ or $\underline{(-k,\infty)}$ or Domain $>-k$ or x "ft one sided inequality" their part (c) RANGE answer	B1√ (1)
		[10]

Question No	Scheme		Marks
2	-5,0 0,-12	Shape x coordinates correct y coordinates correct	B1 B1 B1
	(b) 2,4	Shape Max at (2,4) Min at (-3,0)	(3) B1 B1
	-3,0 <i>O</i>		(3) 6 marks