C3 Chapter 3 Exponential and log functions

Question Number	Scheme	Marks	
5.	(a) 1000	B1	(1)
	(b) $1000 \mathrm{e}^{-5730c} = 500$	M1	
	$e^{-5730c} = \frac{1}{2}$	A1	
	$-5730c = \ln\frac{1}{2}$	M1	
	c = 0.000121 cao	A1	(4)
	(c) $R = 1000 \mathrm{e}^{-22920c} = 62.5$ Accept 62-63	M1 A1	(2)
	(d)		
	R 1000 Shape 1000	B1 B1	(2) [9]

Question Number		Scheme	Marks
Q9 (i)(a)	$\ln(3x - 7) = 5$ $e^{\ln(3x - 7)} = e^{5}$	Takes e of both sides of the equation.	M1
	$3x - 7 = e^5 \implies x = \frac{e^5 + 7}{3} \{ = 51.804 \}$	This can be implied by $3x - 7 = e^5$. Then rearranges to make x the subject. Exact answer of $\frac{e^5 + 7}{3}$.	dM1 A1 (3
(b)	$3^x e^{7x+2} = 15$		
	$\ln\left(3^x e^{7x+2}\right) = \ln 15$	Takes ln (or logs) of both sides of the equation.	M1
	$\ln 3^x + \ln e^{7x+2} = \ln 15$	Applies the addition law of logarithms.	M1
	$x\ln 3 + 7x + 2 = \ln 15$	$x\ln 3 + 7x + 2 = \ln 15$	A1 oe
	$x(\ln 3 + 7) = -2 + \ln 15$	Factorising out at least two <i>x</i> terms on one side and collecting number terms on the other side.	ddM1
	$x = \frac{-2 + \ln 15}{7 + \ln 3} \ \{= 0.0874\}$	Exact answer of $\frac{-2 + \ln 15}{7 + \ln 3}$	A1 oe (5
(ii) (a)	$f(x) = e^{2x} + 3, x \in \square$		
	$y = e^{2x} + 3 \implies y - 3 = e^{2x}$ $\implies \ln(y - 3) = 2x$ $\implies \frac{1}{2}\ln(y - 3) = x$	Attempt to make x (or swapped y) the subject Makes e^{2x} the subject and takes ln of both sides	M1 M1
	Hence $f^{-1}(x) = \frac{1}{2}\ln(x-3)$	$\frac{\frac{1}{2}\ln(x-3)}{\text{or } f^{-1}(y) = \frac{1}{2}\ln(y-3)} \text{ (see appendix)}$	<u>A1</u> cao
	$f^{-1}(x)$: Domain: $\underline{x > 3}$ or $\underline{(3, \infty)}$	Either $\underline{x > 3}$ or $\underline{(3, \infty)}$ or $\underline{\text{Domain} > 3}$.	B1 (4
(b)	$g(x) = \ln(x - 1), x \in \square, x > 1$		
	$fg(x) = e^{2\ln(x-1)} + 3 \left\{ = (x-1)^2 + 3 \right\}$	An attempt to put function g into function f. $e^{2\ln(x-1)} + 3$ or $(x-1)^2 + 3$ or $x^2 - 2x + 4$.	M1 A1 isw
	fg(x): Range: $y > 3$ or $(3, \infty)$	Either $y > 3$ or $(3, \infty)$ or Range > 3 or $fg(x) > 3$.	B1 (3
			[15

Question Number	Scheme	Marl	ks
1.	(a) $e^{2x+1} = 2$ $2x+1 = \ln 2$ $x = \frac{1}{2} (\ln 2 - 1)$	M1 A1	(2)
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 8 \mathrm{e}^{2x+1}$	B1	
	$x = \frac{1}{2}(\ln 2 - 1) \implies \frac{\mathrm{d}y}{\mathrm{d}x} = 16$	В1	
	$y-8=16\left(x-\frac{1}{2}(\ln 2-1)\right)$	M1	
	$y = 16x + 16 - 8\ln 2$	A1	(4) [6]

Question No	Scheme	Marks	
3	(a) $20 (\text{mm}^2)$	B1	
		M1	(1)
	(b) $'40' = 20 \ e^{1.5t} \rightarrow e^{1.5t} = c$ $e^{1.5t} = \frac{40}{20} = (2)$	A1	
	Correct order $1.5t = ln'2' \rightarrow t = \frac{lnc}{1.5}$ $t = \frac{ln2}{1.5} = (awrt \ 0.46)$	M1 A1	
	1.5 12.28 or 28 (minutes)	A1	(5)
		(6 n	narks)

Question Number	Scheme	Marks
1. (a)	$\ln 3x = \ln 6$ or $\ln x = \ln \left(\frac{6}{3}\right)$ or $\ln \left(\frac{3x}{6}\right) = 0$	M1
	x = 2 (only this answer)	A1 (cso) (2)
(b)	$(e^x)^2 - 4e^x + 3 = 0$ (any 3 term form)	M1
	$(e^x - 3)(e^x - 1) = 0$	
	$e^x = 3$ or $e^x = 1$ Solving quadratic	M1 dep
	$(e^{x})^{2} - 4e^{x} + 3 = 0$ (any 3 term form) $(e^{x} - 3)(e^{x} - 1) = 0$ $e^{x} = 3$ or $e^{x} = 1$ Solving quadratic $x = \ln 3$, $x = 0$ (or $\ln 1$)	M1 A1 (4)
		(6 marks)

Question Number	Scheme		Marks
8. (a)	$D = 10, t = 5,$ $x = 10e^{-\frac{1}{8} \times 5}$ = 5.353 awrt	M1 A1	(2)
(b)	$D = 10 + 10e^{-\frac{5}{8}}, t = 1,$ $x = 15.3526 \times e^{-\frac{1}{8}}$ $x = 13.549$ (**)	M1 A1	cso (2)
Alt.(b)	$x = 10e^{-\frac{1}{8} \times 6} + 10e^{-\frac{1}{8} \times 1}$ M1 $x = 13.549$ (**) A1 cso		
(c)	$15.3526e^{-\frac{1}{8}T} = 3$	M1	
	$e^{-\frac{1}{8}T} = \frac{3}{15.3526} = 0.1954$		
	$-\frac{1}{8}T = \ln 0.1954$	M1	
	T = 13.06 or 13.1 or 13	A1	(3)
			(7 marks)

Question Number	Scheme	Ma	arks
Q3	$P = 80 e^{\frac{t}{3}}$		
(a)	$t = 0 \implies P = 80e^{\frac{9}{5}} = 80(1) = \underline{80}$	<u>80</u> B1	(1)
(b)	$P = 1000 \Rightarrow 1000 = 80e^{\frac{t}{3}} \Rightarrow \frac{1000}{80} = e^{\frac{t}{3}}$ Substitutes $P = 1000$ rearranges equation to make $e^{\frac{t}{3}}$ subj	the M1	
	$\therefore t = 5\ln\left(\frac{1000}{80}\right)$		
	$t = 12.6286$ awrt 12.6 or 13 y Note $t = 12$ or $t = \text{awrt } 12.6 \Rightarrow t = 12$ will score A0	ears A1	(2)
(c)	$\frac{\mathrm{d}P}{\mathrm{d}t} = 16\mathrm{e}^{\frac{t}{3}} \qquad k\mathrm{e}^{\frac{1}{3}t} \text{ and } k \neq 10$	80. M1 $6e^{\frac{1}{5}t}$ A1	(2)
(d)	$50 = 16e^{\frac{t}{3}}$		
	$\therefore t = 5 \ln \left(\frac{50}{16} \right)$ $\left\{ = 5.69717 \right\}$ Using $50 = \frac{dP}{dt}$ an attempt to so to find the value of t or	olve M1	
	$P = 80e^{\frac{1}{5}\left(5\ln\left(\frac{50}{16}\right)\right)} \text{or} P = 80e^{\frac{1}{5}\left(5.69717\right)}$ Substitutes their value of t is into the equation for		
	$P = \frac{80(50)}{16} = \underline{250}$ or awrt	250 A1	(2)
			(3)
			[8]

Question Number	Scheme	Marks
5 (a)	p=7.5	B1 (1)
(b)	$2.5 = 7.5e^{-4k}$	(1) M1
	$e^{-4k} = \frac{1}{3}$	M1
	$-4k = \ln(\frac{1}{3})$ $-4k = -\ln(3)$	dM1
	$-4k = -\ln(3)$ $k = \frac{1}{4}\ln(3)$	A1*
		(4)
(c)	$\frac{dm}{dt} = -kpe^{-kt} \qquad \text{ft on their } p \text{ and } k$	M1A1ft
	$-\frac{1}{4}\ln 3 \times 7.5e^{-\frac{1}{4}(\ln 3)t} = -0.6\ln 3$	
	$e^{-\frac{1}{4}(ln3)t} = \frac{2.4}{7.5} = (0.32)$	M1A1
	$-\frac{1}{4}(\ln 3)t = \ln(0.32)$	dM1
	<i>t</i> =4.1486 4.15 or awrt 4.1	A1
		(6)
		11Marks

Question Number	Scheme		Marks
4.	$\theta = 20 + Ae^{-kt} (eqn *)$		
	$\theta = 20 + Ae^{-kt} (eqn *)$ $\{t = 0, \theta = 90 \implies\} 90 = 20 + Ae^{-k(0)}$ $90 = 20 + A \implies \underline{A = 70}$	Substitutes $t = 0$ and $\theta = 90$ into eqn *	M1
	$90 = 20 + A \implies \underline{A = 70}$	$\underline{A = 70}$	A1 (2)
(b)	$\theta = 20 + 70e^{-kt}$		
	$\{t = 5, \ \theta = 55 \implies\} 55 = 20 + 70e^{-k(5)}$ $\frac{35}{70} = e^{-5k}$	Substitutes $t = 5$ and $\theta = 55$ into eqn * and rearranges eqn * to make $e^{\pm 5k}$ the subject.	M1
	$ \ln\left(\frac{35}{70}\right) = -5k $	Takes 'lns' and proceeds to make ' $\pm 5k$ ' the subject.	dM1
	$-5k = \ln\left(\frac{1}{2}\right)$		
	$-5k = \ln 1 - \ln 2 \implies -5k = -\ln 2 \implies \underline{k = \frac{1}{5} \ln 2}$	Convincing proof that $k = \frac{1}{5} \ln 2$	A1 *
(c)	$\theta = 20 + 70e^{-\frac{1}{3}t \ln 2}$		
	$\frac{d\theta}{dt} = -\frac{1}{5} \ln 2.(70) e^{-\frac{1}{5}t \ln 2}$	$\pm \alpha e^{-kt}$ where $k = \frac{1}{5} \ln 2$ -14 \ln 2 e^{-\frac{1}{5}t \ln 2}	M1 A1 oe
	When $t = 10$, $\frac{d\theta}{dt} = -14 \ln 2 e^{-2 \ln 2}$		
	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -\frac{7}{2}\ln 2 = -2.426015132$		
	Rate of decrease of $\theta = 2.426 ^{\circ} C / \text{min}$ (3 dp.)	awrt ± 2.426	A1 (3)