C3

$$
\begin{aligned}
& \text { Chapter } 3 \\
& \text { Exponential and log } \\
& \text { functions }
\end{aligned}
$$

Question Number	Scheme		Marks	
5.	(a) 1000		B1	(1)
	(b) $1000 \mathrm{e}^{-5730 \mathrm{c}}=500$			
	$\mathrm{e}^{-5730 c}=\frac{1}{2}$		A1	
	$-5730 c=\ln \frac{1}{0}$		M1	
	$c=0.000121$	cao	Al	(4)
	(c) $R=1000 \mathrm{e}^{-22920 c}=62.5$ (d)	Accept 62-63	M1 A1	(2)
		Shape 1000	B1 B1	(2) [9]

Question Number		Scheme	Marks
Q9 (i)(a)	$\ln (3 x-7)=5$		
	$\mathrm{e}^{\ln (3 x-7)}=\mathrm{e}^{5}$	Takes e of both sides of the equation. This can be implied by $3 x-7=e^{5}$.	M1
		Then rearranges to make x the subject.	dM1
	$3 x-7=\mathrm{e}^{5} \Rightarrow x=\frac{e^{5}+7}{3}\{=51.804 \ldots\}$	Exact answer of $\frac{\mathrm{e}^{5}+7}{3}$.	A1
	$3^{x} \mathrm{e}^{7 x+2}=15$		
	$\ln \left(3^{x} \mathrm{e}^{7 x+2}\right)=\ln 15$	Takes \ln (or logs) of both sides of the equation.	M1
	$\ln 3^{x}+\ln \mathrm{e}^{7 x+2}=\ln 15$	Applies the addition law of logarithms.	M1
	$x \ln 3+7 x+2=\ln 15$	$x \ln 3+7 x+2=\ln 15$	A1 oe
	$x(\ln 3+7)=-2+\ln 15$	Factorising out at least two x terms on one side and collecting number terms on the other side.	ddM1
	$x=\frac{-2+\ln 15}{7+\ln 3}\{=0.0874 \ldots\}$	Exact answer of $\frac{-2+\ln 15}{7+\ln 3}$	A1 oe
(ii) (a)	$\mathrm{f}(x)=\mathrm{e}^{2 x}+3, x \in \square$		
	$\begin{aligned} & y=\mathrm{e}^{2 x}+3 \Rightarrow y-3=\mathrm{e}^{2 x} \\ & \Rightarrow \ln (y-3)=2 x \end{aligned}$	Attempt to make x (or swapped y) the subject	M1
	$\Rightarrow \frac{1}{2} \ln (y-3)=x$	Makes $\mathrm{e}^{2 x}$ the subject and takes \ln of both sides	M1
	Hence $\mathrm{f}^{-1}(x)=\underline{\frac{1}{2} \ln (x-3)}$	$\frac{1}{2} \ln (x-3)$ or $\ln \sqrt{(x-3)}$ or $\mathrm{f}^{-1}(y)=\frac{1}{2} \ln (y-3)$ (see appendix)	A1 cao
	$\mathrm{f}^{-1}(x)$: Domain: $\underline{x>3}$ or $(3, \infty)$	Either $\underline{x>3}$ or $(3, \infty)$ or Domain >3.	B1
	$\mathrm{g}(x)=\ln (x-1), x \in \square, x>1$		(4)
	$\operatorname{fg}(x)=\mathrm{e}^{2 \ln (x-1)}+3 \quad\left\{=(x-1)^{2}+3\right\}$	An attempt to put function g into function f . $\mathrm{e}^{2 \ln (x-1)}+3$ or $(x-1)^{2}+3$ or $x^{2}-2 x+4$.	M1 A1 isw
	$\mathrm{fg}(x)$: Range: $y>3$ or $(3, \infty)$	Either $\underline{y>3}$ or (3,) or Range >3 or $\operatorname{fg}(x)>3$.	B1
			(3)
			[15]

Question Number		Scheme	Marks	
1.	(a)	$\begin{aligned} \mathrm{e}^{2 x+1} & =2 \\ 2 x+1 & =\ln 2 \\ x & =\frac{1}{2}(\ln 2-1) \end{aligned}$	M1	
	(b)	$\begin{gathered} \frac{\mathrm{d} y}{\mathrm{~d} x}=8 \mathrm{e}^{2 x+1} \\ x=\frac{1}{2}(\ln 2-1) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=16 \end{gathered}$	B1 B1	
		$\begin{aligned} y-8 & =16\left(x-\frac{1}{2}(\ln 2-1)\right) \\ y & =16 x+16-8 \ln 2 \end{aligned}$	M1 A1	(4) [6]

Question Number	Scheme	Marks
1. (a)	$\ln 3 x=\ln 6$ or $\ln x=\ln \left(\frac{6}{3}\right) \quad$ or $\ln \left(\frac{3 x}{6}\right)=0$ $x=2 \quad$ (only this answer)	$\begin{aligned} & \text { M1 } \\ & \text { A1 (cso) (2) } \\ & \hline \end{aligned}$
(b)	$\begin{aligned} & \left(\mathrm{e}^{x}\right)^{2}-4 \mathrm{e}^{x}+3=0 \quad \text { (any } 3 \text { term form) } \\ & \left(\mathrm{e}^{x}-3\right)\left(\mathrm{e}^{x}-1\right)=0 \quad \text { or } \quad \mathrm{e}^{x}=1 \quad \text { Solving quadratic } \\ & \mathrm{e}^{x}=3 \quad \text { or } \quad x=0(\text { or } \ln 1) \quad \\ & x=\ln 3, \quad x \end{aligned}$	

Question Number	Scheme	Marks
5 (a)	$p=7.5$	B1 (1)
(b)	$2.5=7.5 e^{-4 k}$	M1
	$e^{-4 k}=\frac{1}{3}$	M1
	$\begin{gathered} -4 k=\ln \left(\frac{1}{3}\right) \\ -4 k=-\ln (3) \end{gathered}$	dM1
	$k=\frac{1}{4} \ln (3)$	A1*
		(4)
(c)	$\frac{d m}{\mathrm{~d} t}=-k p e^{-k t} \quad \mathrm{ft}$ on their p and k	M1A1ft
	$-\frac{1}{4} \ln 3 \times 7.5 e^{-\frac{1}{4}(\ln 3) t}=-0.6 \ln 3$	
	$e^{-\frac{1}{4}(\ln 3) t}=\frac{2.4}{7.5}=(0.32)$	M1A1
	$-\frac{1}{4}(\ln 3) t=\ln (0.32)$	dM1
	$t=4.1486 \ldots . \quad 4.15$ or awrt 4.1	A1
		(6)
		11Marks

Question Number	Scheme		Marks
4 (a)	$\begin{aligned} & \theta=20+A \mathrm{e}^{-k t} \quad(\text { eqn } *) \\ & \{t=0, \theta=90 \Rightarrow\} \quad 90=20+A \mathrm{e}^{-k(0)} \\ & 90=20+A \Rightarrow A=70 \end{aligned}$	Substitutes $t=0$ and $\theta=90$ into eqn * $A=70$	M1 A1 (2)
(b)	$\begin{aligned} & \theta=20+70 \mathrm{e}^{-k t} \\ & \{t=5, \theta=55 \Rightarrow\} \begin{array}{c} 55=20+70 \mathrm{e}^{-k(5)} \\ \frac{35}{70}=\mathrm{e}^{-5 k} \end{array} \\ & \ln \left(\frac{35}{70}\right)=-5 k \\ & -5 k=\ln \left(\frac{1}{2}\right) \\ & -5 k=\ln 1-\ln 2 \Rightarrow-5 k=-\ln 2 \Rightarrow k=\frac{1}{5} \ln 2 \end{aligned}$	Substitutes $t=5$ and $\theta=55$ into eqn * and rearranges eqn $*$ to make $\mathrm{e}^{ \pm 5 \mathrm{k}}$ the subject. Takes 'Ins' and proceeds to make ' $\pm 5 k$ ' the subject. Convincing proof that $k=\frac{1}{5} \ln 2$	M1 dM1 A1 * (3)
(c)	$\begin{aligned} \theta & =20+70 \mathrm{e}^{-\frac{1}{5} t \ln 2} \\ \frac{\mathrm{~d} \theta}{\mathrm{~d} t} & =-\frac{1}{5} \ln 2 \cdot(70) \mathrm{e}^{-\frac{1}{5} t \ln 2} \end{aligned}$ When $t=10, \frac{\mathrm{~d} \theta}{\mathrm{~d} t}=-14 \ln 2 \mathrm{e}^{-2 \ln 2}$ $\frac{\mathrm{d} \theta}{\mathrm{~d} t}=-\frac{7}{2} \ln 2=-2.426015132 \ldots$ Rate of decrease of $\theta=2.426{ }^{\circ} \mathrm{C} / \mathrm{min}(3 \mathrm{dp}$.	$\begin{array}{r} \pm \alpha \mathrm{e}^{-k t} \text { where } k=\frac{1}{5} \ln 2 \\ -14 \ln 2 \mathrm{e}^{-\frac{1}{5} t \ln 2} \end{array}$ awrt ± 2.426	M1 A1 oe A1 (3) [8]

