## Calculus methods for determining the centre of mass of a uniform plane lamina

In M2 we considered how to determine the position of the centre of mass of a uniform plane lamina using its symmetries.

$$
\sum m_{i}\binom{\bar{x}}{\bar{y}}=\sum m_{i}\binom{x_{i}}{y_{i}}
$$

We must now consider how to deal with lamina which have no symmetries.
When a lamina or plane region is bounded by curves for which the equations are known, calculus methods can be used to find the position of its centre of mass.


When a lamina occupies a region between a curve and the $x$-axis as shown above, it can be approximated by elementary strips of width $\delta x$ and length $y$. One such strip, situated at the point ( $\mathrm{x}, \mathrm{y}$ ) on the curve is shown. The dot indicates the centre of mass of this elementary strip. Let $\rho$ (Greek letter 'rho') be the mass per unit area of the lamina.

Mass of each strip, $\delta M=$ AREA of STRLD $\times$ DENsITY $=y \delta x e$
Centre of mass of strip @ $\left(x, \frac{y}{2}\right)$
Hence centre of mass of lamina $(\bar{x}, \bar{y})$ can be determined:

$$
\begin{aligned}
& (\Sigma \delta M) \bar{x}=\Sigma(\delta M x) \\
& \left(\sum \phi y \delta x\right) \bar{x}=\sum\left(\phi y \delta_{x} x\right) \\
& (\Sigma y \delta x) \bar{x}=\Sigma(x y \delta x) \\
& \text { in limit os } \delta x \rightarrow 0 \text {, summation become } \\
& \left(\int_{a}^{b} y_{\|} d x\right) \bar{x}=\int_{a}^{b} x y d x \\
& (\Sigma \delta M) \bar{y}=\sum\left(\delta M\left(\frac{4}{2}\right)\right) \\
& \left(\sum y \delta x p\right) \bar{y}=\sum\left(y \delta x p\left(\frac{y}{2}\right)\right) \\
& \left(\sum y \delta x\right) \bar{y}=\frac{1}{2} \sum y^{2} \delta x \\
& \text { is lieut os } \delta x \rightarrow 0 \\
& \left(\int_{a}^{b} y d x\right) \overline{4}=\frac{1}{2} \int_{a}^{b} y^{2} d x
\end{aligned}
$$

In summary:

$$
M\binom{\bar{x}}{\bar{y}}=\binom{\int_{a}^{b} \rho x y d x}{\frac{1}{2} \int_{a}^{b} \rho y^{2} d x}
$$

where the total mass, $M=\int_{a}^{b} \rho y d x$

## Examples

1. Find the position of the centre of mass of a uniform semi-circular lamina of radius r .
2. Find the coordinates of the centre of mass of the region between the curve $y=4-x^{2}$ and the positive $x$ and $y$ axis.

## Exercise 5A Page 171 Odd's

Eql


$$
x^{2}+y^{2}=r^{2}
$$

By symmets, $\bar{x}=0$
Man of semi-cinle $=1 \rho \pi r^{2}$
Now $\quad M-\frac{1}{-}=\frac{1}{2} \int_{-r}^{r} \rho y^{2} d x$
wher $y^{2}=r^{2}-x^{2}$

$$
\begin{aligned}
& \frac{y}{2} \neq \pi r^{2} \bar{y}=k \int_{2}^{2} \int_{-r}^{r} r^{2}-x^{2} d x \\
& \operatorname{Tr} r^{2} \bar{y}=\left[r^{2} x-\frac{x^{3}}{3}\right]_{-r}^{r} \\
& \pi r^{2} \bar{y}=\left(r^{3}-\frac{r^{3}}{3}\right)-\left(-r^{3}-\frac{-r^{3}}{3}\right) \\
& \pi r^{2} \bar{y}=r^{3}-\frac{r^{3}}{3}+r^{3}-\frac{r^{3}}{3} \\
& \pi r^{2} \bar{y}=\frac{4 r^{3}}{3}
\end{aligned}
$$

$\overline{4}=\frac{4 r}{3 \pi} \Leftarrow$ standard result establishel inmz.

Eq $2 \quad y=4-x^{2}$
$x=0 \quad y=4$
$y=0 \quad x=さ 2$


$$
\begin{aligned}
& M=\rho \int_{0}^{2} y d x \\
& M=\rho \int_{0}^{2} 4-x^{2} d x \\
& M=\rho\left[4 x-\frac{x^{3}}{3}\right]_{0}^{2} \\
& M=\rho\left(8-\frac{8}{3}\right) \\
& M=\frac{16 \rho}{3}
\end{aligned}
$$

Now $M \bar{x}=\int P x y d x \quad$ AND $M \bar{y}=\frac{1}{2} \int \rho y^{2} d x$

$$
\begin{aligned}
& \frac{16 p}{3} \bar{x}=\ell \int_{0}^{1} x\left(4-x^{2}\right) d x \\
& \frac{16}{3} \bar{x}=\left[2 x^{2}-\frac{x^{4}}{4}\right]_{0}^{2} \\
& \frac{16}{3} \bar{x}=\left(8-\frac{16}{4}\right) \\
& \frac{16}{3} \bar{x}=4 \\
& \bar{x}=\frac{3}{4}
\end{aligned}
$$

$\therefore \operatorname{com} @\left(\frac{3}{4}, \frac{8}{5}\right)$

$$
\begin{aligned}
& \frac{16 \phi \bar{y}=\frac{1}{2} p \int_{0}^{2}\left(4-x^{2}\right)^{2} d x}{\frac{32}{3} \bar{y}=\int_{0}^{2} 16-8 x^{2}+x^{4} d x} \\
& \frac{32}{3} \bar{y}=\left[16 x-\frac{8 x^{3}}{3}+\frac{x^{5}}{5}\right]_{0}^{2} \\
& \frac{32}{3} \bar{y}=32-\frac{64}{3}+\frac{32}{5} \\
& \frac{32}{3} \overline{4}=\frac{256}{5} \\
& \overline{4}=\frac{8}{5}
\end{aligned}
$$

