3. On separate diagrams, sketch the graphs of
(3)
(b) $y=(x+3)^{2}+k$, where k is a positive constant.
(2)

Show on each sketch the coordinates of each point at which the graph meets the axes.
(h)

$$
\mathrm{f}(x)=\frac{1}{x}, \quad x \neq 0
$$

(a) sketch the graph of $y=f(x)+3$ and state the equations of the asymptotes.
(b) Find the coordinates of the point where $y=\mathrm{f}(x)+3$ crosses a coordinate axis.
3.

Figure 1
Figure 1 shows a sketch of the curve with equation $y=\mathrm{f}(x)$. The curve passes through the point $(0,7)$ and has a minimum point at $(7,0)$.

On separate diagrams, sketch the curve with equation
(a) $y=\mathrm{f}(x)+3$,
(3)
(b) $y=\mathrm{f}(2 x)$.
(2)

On each diagram, show clearly the coordinates of the minimum point and the coordinates of the point at which the curve crosses the y-axis.

Figure 1 shows a sketch of the curve with equation $y=\mathrm{f}(x)$. The curve passes through the origin O and through the point $(6,0)$. The maximum point on the curve is $(3,5)$.

On separate diagrams, sketch the curve with equation
(a) $y=3 \mathrm{f}(x)$,
(2)

(b) $y=\mathrm{f}(x+2)$.
(3)

On each diagram, show clearly the coordinates of the maximum point and of each point at which the curve crosses the x-axis.

Figure 1
Figure 1 shows a sketch of the curve with equation $y=\frac{3}{x}, x \neq 0$.
(a) On a separate diagram, sketch the curve with equation $y=\frac{3}{x+2}, x \neq-2$,
showing the coordinates of any point at which the curve crosses a coordinate axis.
(b) Write down the equations of the asymptotes of the curve in part (a).
(2)

Figure 1 shows a sketch of the curve with equation $y=\mathrm{f}(x)$. The curve passes through the points $(0,3)$ and $(4,0)$ and touches the x-axis at the point $(1,0)$.

On separate diagrams, sketch the curve with equation
(a) $y=\mathrm{f}(x+1)$,
(b) $y=2 \mathrm{f}(x)$,
(c) $y=\mathrm{f}\left(\frac{1}{2} x\right)$.

On each diagram show clearly the coordinates of all the points at which the curve meets the axes.

Figure 1
Figure 1 shows a sketch of the curve with equation $y=\mathrm{f}(x)$. The curve crosses the x-axis at the points $(1,0)$ and $(4,0)$. The maximum point on the curve is $(2,5)$.
In separate diagrams sketch the curves with the following equations.
On each diagram show clearly the coordinates of the maximum point and of each point at which the curve crosses the x-axis.
(a) $y=2 \mathrm{f}(x)$,
(b) $y=\mathrm{f}(-x)$.

The maximum point on the curve with equation $y=\mathrm{f}(x+a)$ is on the y-axis.

