The curve C has equation y = f(x), $x \neq 0$, and the point P(2, 1) lies on C. Given that 7.

INTEGRATION PPQ'S (THE HARDER ONES!)

$$f'(x) = 3x^2 - 6 - \frac{8}{x^2},$$

(a) find f(x).

2007

(b) Find an equation for the tangent to C at the point P, giving your answer in the form y = mx + c, where m and c are integers.

9.	The curve C has equation $y = f(x)$, $x > 0$, and $f'(x) = 4x - 6\sqrt{x + \frac{8}{x}}$.		
N	Given that the point $P(4, 1)$ lies on C ,		
55	(a) find $f(x)$ and simplify your answer.		
UNT	(b) Find an equation of the normal to C at the point $P(4, 1)$.	(6)	,
9.	The curve C with equation $y = f(x)$ passes through the point (5, 65).		-
0	Given that $f'(x) = 6x^2 - 10x - 12$,		
5)	(a) use integration to find $f(x)$.		
Z		(4)	
31	(b) Hence show that $f(x) = x(2x+3)(x-4)$.		
ZS		(2)	
J	(c) In the space provided on page 17, sketch C, showing the coordinates of the where C crosses the x-axis.	points	
		(3)	

10. The curve C with equation y = f(x), $x \neq 0$, passes through the point $(3, 7\frac{1}{2})$.

Given that
$$f'(x) = 2x + \frac{3}{x^2}$$
,
(a) find $f(x)$.

(b) Verify that f(-2) = 5.

2001

MAN

(1)

(5)

(5)

(4)

(c) Find an equation for the tangent to C at the point (-2, 5), giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(4)

11. The gradient of a curve C is given by
$$\frac{dy}{dx} = \frac{(x^2 + 3)^2}{x^2}, x \neq 0.$$

(a) Show that $\frac{dy}{dx} = x^2 + 6 + 9x^{-2}.$
(b) Find an equation for the curve C in the form $y = f(x).$
(c)