3. Given that
$$y = 3x^2 + 4\sqrt{x}$$
, $x > 0$, find
(a) $\frac{dy}{dx}$. (2)
(b) $\frac{d^2y}{dx^2}$. (2)
(c) $\int y dx$. (a)
(d) $\int dx dx$. (c) $f(x) = 3x + x^2$, $x > 0$.
(a) Differentiate to find $f'(x)$. (2)
Given that $f'(x) = 15$, (3)
(b) find the value of x. (a)
5. (a) Write $\frac{2\sqrt{x}+3}{x}$ in the form $2x^{\mu}+3x^{\mu}$ where p and q are constants. (a)
5. (a) Write $\frac{2\sqrt{x}+3}{x}$ in the form $2x^{\mu}+3x^{\mu}$ where p and q are constants. (b) find $\frac{dy}{dx}$, simplifying the coefficient of each term. (c)
9. The curve C has equation $y = 4x^2 - x^2 + x - 5$, where k is a constant.
(a) Find $\frac{dy}{dx}$. (c)
The point A with x-coordinate $-\frac{1}{2}$ lies on C. The tangent to C at A is parallel to the line with equation $2y - 7x + 1 = 0$.
Find
(b) the value of k . (c)
(c) the value of k . (d)
(c) the value of k (d)
(c) find an equation $y = x^2(x-6) + \frac{4}{x}, x > 0$.
The points β and Q lie on C and have x-coordinates 1 and 2 respectively.
(a) Show that the tangents to C at P and Q are parallel. (f)
(b) Show that the tangents to C at P and Q are parallel. (f)
(c) Find an equation for the normal to C at P, giving your answer in the form $ax + by^2 + c = 0$, where a, b and c are integers. (f)
(h) Show that the equation of C can be written in the form $y = x^2 + x^2 - 5x + k$, where k is a positive integer, and state the value of k. (c)
(b) Show that the equation of C can be written in the form $y = x^2 + x^2 - 5x + k$, where k is a positive integer, and state the value of k (c) are used to 2 d. There are to a constraint a C d. (c) the value to C d. (c) the value of C can be written in the form $y = x^2 + x^2 - 5x + k$, where k is a positive integer, and state the value of k (c) the value to 2 d. (c) the value to 3 d. (c) the value to 3 d.

(EASY + IJAND)

3

R S

(H:c

points on C where the gradient of the tangent to C is equal to 3.

(c) Find the x-coordinates of these two points.

(6)