3. Given that $y=3 x^{2}+4 \sqrt{ } x, \quad x>0$, find
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}$,
(2)
(b) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$,
(c) $\int y d x$.
4.

$$
\mathrm{f}(x)=3 x+x^{3}, \quad x>0
$$

(a) Differentiate to find $\mathrm{f}^{\prime}(x)$.
(2)

Given that $\mathrm{f}^{\prime}(x)=15$,
(b) find the value of x.
(3)
5. (a) Write $\frac{2 \sqrt{ } x+3}{x}$ in the form $2 x^{p}+3 x^{q}$ where p and q are constants.

Given that $y=5 x-7+\frac{2 \sqrt{ } x+3}{x}, \quad x>0$,
(2)
(b) find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, simplifying the coefficient of each term.
9. The curve C has equation $y=k x^{3}-x^{2}+x-5$, where k is a constant.
(a) Find $\frac{d y}{d x}$
(2)

The point A with x-coordinate $-\frac{1}{2}$ lies on C. The tangent to C at A is parallel to the line with equation $2 y-7 x+1=0$.

Find
(b) the value of k,
(c) the value of the y-coordinate of A.
10. The curve C has equation $y=x^{2}(x-6)+\frac{4}{x}, x>0$.

The points P and Q lie on C and have x-coordinates 1 and 2 respectively.
(a) Show that the length of $P Q$ is $\sqrt{ } 170$.
(b) Show that the tangents to C at P and Q are parallel.
(c) Find an equation for the normal to C at P, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
10. The curve C has equation

$$
y=(x+3)(x-1)^{2} .
$$

(a) Sketch C showing clearly the coordinates of the points where the curve meets the coordinate axes.
(b) Show that the equation of C can be written in the form

$$
y=x^{3}+x^{2}-5 x+k
$$

where k is a positive integer, and state the value of k.

There are two points on C where the gradient of the tangent to C is equal to 3 .
(c) Find the x-coordinates of these two points.

