Acceleration as a function of displacement

Consider if
$$a = f(x)$$
,
but $\alpha = \frac{dv}{dt}$
So $\frac{dv}{dt} = f(x)$
Use chain rule to introduce x ...
 $\frac{dv}{dt} = \frac{dv}{dt} \cdot \frac{du}{dt}$
but $\frac{du}{dt} = v$
 $\therefore \frac{dv}{dt} = v \frac{dv}{dx}$
hence $\alpha = v \frac{dv}{dx}$, $v \frac{dv}{dx} = f(x) \Rightarrow \int v \frac{dv}{dx} = \int f(x) \frac{dx}{dx}$
 $\frac{v}{dt} = \frac{v}{dt} + \frac{v}{dt} = \int f(x) \frac{dx}{dt} + \frac{v}{dt} + \frac{v}{dt} = \int f(x) \frac{dx}{dt} + \frac{v}{dt} + \frac{v$

1. O and A are two points on a straight line with OA = d. A particle moves along the line with its acceleration *a* at any time *t* given by $a = -k^2x$, where *x* is the displacement of the particle from O at time *t* and *k* is a constant. When the

particle is at A, its speed v is zero. Show that $v = k\sqrt{d^2 - x^2}$

- 2. OAB is a straight line with A between O and B and OA = 2m. A body is initially at rest at A and moves towards B with its acceleration at any instant given by $a = \frac{k}{x}ms^{-2}$, where x metres is the distance that the body is from O at that instant and k is a constant. Show that is $v ms^{-1}$ is the velocity of the body, then $v^2 = 2k \ln \frac{x}{2}$.
- 3. If a = 4s + 2 and initially s = 0 and $v = 1 \text{ ms}^{-1}$, find a. the value of v when s = 3m
 - b. the value of t when s = 3m

Exercise 1B Odd's

 $E_{21} = -k^2 x$ $\frac{V^2}{2} = \int -k^2 z \, dz$ $\frac{V^2}{2} = -\frac{k^2 x^2}{2} + C$ when x = d, v = 0 ... $c = k d^2$ $V = k^2 d^2 - k^2 d^2$ $V = k^2 (d^2 - x^2)$ V: ± k/d²-x² as x increases, a becomes more -ve but to V= k/d2-x2 $G_2^2 = \frac{k}{x}$ $\frac{V^2}{2} = \int \frac{k}{x} dx$ $\frac{V^2}{2} = k \ln x + c$ when V 50,7=2 := C= -kln2 $\frac{V^2}{2} = k \ln x - k \ln 2$ $\frac{V^2}{2} = k \ln \left(\frac{x}{2} \right)$ V= 2kln(x) As required.

Eg3 a= 45+2 $\frac{V^2}{2} = \int 4s + 2 \, ds$ V= 25+25+C when 5=0 V=1 -: C= 1 $\frac{V}{2} = \frac{25}{2} + \frac{25}{2} + \frac{1}{2}$ V= 452+45+1 $V^{2}=(2s+1)^{2}$ V= ± (25+1) as a is increasing @V >0 ·. V=25+1 (a) when 5=3 V=7m5 (b) Now V = ds dt $\frac{1}{dt} = 2s + 1$ $\int \frac{1}{2s+1} ds = \int dt$ 1h(25+1) = t + c when £=0, 5=0 . . C=0 $E = \frac{1}{2} \ln \left(2s + 1 \right)$ when 5=3 E= 1/17 = 0.973 secs.