Further Kinematics

In Mechanics 1 acceleration was constant and this enabled us to use uvast $(\mathrm{v}=\mathrm{u}+\mathrm{at}$, etc) formulae to model situations and solve problems.

In Mechanics 2 we had to deal with situations where the acceleration was variable and given as a function of time. These situations were modelled using calculus:

$$
\begin{aligned}
& \text { velocity }=\text { rate of change of distance } \\
& \qquad v=\frac{d s}{d t}=\dot{s}
\end{aligned}
$$

The dot notation is used to show differentiation with respect to time.

$$
\begin{aligned}
& \text { acceleration }=\text { rate of change of velocity } \\
& \qquad a=\frac{d v}{d t}=\dot{v}
\end{aligned}
$$

or

$$
a=\frac{d}{d t}\left(\frac{d s}{d t}\right)=\frac{d^{2} s}{d t^{2}}=\ddot{s}
$$

When the acceleration is given as a function of time, in order to obtain an expression for velocity, integration is necessary:

$$
\begin{aligned}
& a=\frac{d v}{d t}=f(t) \\
& \therefore \quad \int d v=\int f(t) d t \\
& \text { or } \quad v=\int f(t) d t+C
\end{aligned}
$$

The value of the constant needs to be determined using further information given in a question. A second integration will give an expression for displacement. Remember that a constant must be introduced at each integration.

Examples Review Exercise 1 Page 97 Questions 1, 4, 5 and 7.
Exercise 1A Q's 5, 8, 10-12.
When you're happy with those.....Q13 for megabeings!

Reurew Ex
(1)

$$
\begin{aligned}
& a=3 e^{2 t} \\
& Q=\frac{d v}{d t}=3 e^{u t} \\
& \int d v=\int 3 e^{2 t} d t \\
& V=\frac{3}{2} e^{2 t}+c
\end{aligned}
$$

uhat $t=0, V=8$

$$
\begin{aligned}
& 8=\frac{3}{2}+c \quad c=\frac{13}{2} \\
& V=\frac{d x}{d t}=\frac{3}{2} e^{2 t}+\frac{13}{2} \\
& x=\int \frac{3}{2} e^{2 t}+\frac{13}{2} d t \\
& x=\frac{3}{4} e^{2 t}+\frac{13 t}{2}+c
\end{aligned}
$$

whar $t=0, x_{0}=\frac{3}{4}+c$
whe $t=2, x_{2}=\frac{3}{4} e^{4}+\frac{26}{2}+c$
\therefore Distance moved ì $1^{k} 2$ sees $=x_{2}-x_{0}$

$$
\begin{aligned}
& \left.=\frac{3}{4} e^{4}+13+c-\left(\frac{3}{4}\right)+c\right) \\
& =\frac{3}{4} e^{4}+\frac{49}{4} \\
& =53 \cdot 2 \mathrm{~m}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& v=6 t+t^{2} \\
& a=\frac{d v}{d t}=6+2 t \\
& x t v=\frac{d x}{d t}=6 t+t^{2} \\
& x=\int 6 t+t^{2} d t \\
& x=3 t^{2}+\frac{t^{3}}{3}+c
\end{aligned}
$$

@t=2 $\quad x_{A}=3(2)^{2}+\frac{(2)^{3}}{3}+c$

$$
x_{\infty}=12+\frac{8}{3}+c
$$

$$
x_{C A}=\frac{44}{3}+c
$$

$$
\text { at=5 } \begin{aligned}
x_{3} & =3(5)^{2}+\frac{(5)^{3}}{3}+c \\
& =75+\frac{125}{3}+c \\
& =\frac{350}{3}+c
\end{aligned}
$$

Dut 8 Bfoun $A=x_{3}-x_{A}=\frac{350}{3}+c-\left(\frac{44}{3}+c\right)=102$ uedor
(4)

$$
\begin{gather*}
a=6 t-8 \\
a=\frac{d v}{d t}=6 t-8 \\
v=\int 6 t-8 d t \\
v=3 t^{2}-8 t+c \\
w h e t=0, v=4-\cdots c=4 \\
V=3 t^{2}-8 t+4 \tag{1}\\
V=\frac{d x}{d t}=3 t^{2}-8 t+4 \\
x=\int 3 t^{2}-8 t+4 d t \\
x=t^{3}-4 t^{2}+4 t+c
\end{gather*}
$$

@ $t=0 \quad x=0 \quad \therefore c=0$

$$
\begin{equation*}
x=t^{3}-4 t^{2}+4 t \tag{2}
\end{equation*}
$$

(a) Conos instantareously to est when $V=0$

$$
\begin{aligned}
& \therefore \text { from (1) } \quad 3 t^{2}-8 t+4=0 \\
& t=\frac{2}{3}+t=2
\end{aligned}
$$

1 fint cons ko rest @ $t=2 / 3$

$$
\text { (2) } \begin{aligned}
x & =\left(\frac{2}{3}\right)^{3}-4\left(\frac{2}{3}\right)^{2}+4\left(\frac{2}{3}\right) \\
& =\frac{8}{24}-\frac{16}{9}+\frac{8}{3} \\
& =\frac{32}{27} \text { metos }
\end{aligned}
$$

(b) returns to stating pout wher $x=0$

$$
\begin{aligned}
& t^{3}-4 t^{2}+4 t=0 \quad \therefore \text { enth } t=0 \quad \in \text { sels ff } \\
& t\left(t^{2}-4 t+4\right)=0 \quad \text { or } t=2 \text { ses } \Leftarrow \text { retuns } \\
& t(t-2 x(t-2)=0
\end{aligned}
$$

(4)(c) Max speed when $a=0 \quad 6(--8=0$

$$
\epsilon=\frac{8}{6}=\frac{4}{3} \mathrm{sec}
$$

4(1)

$$
\begin{aligned}
V_{\text {max }} & =3\left(\frac{4}{3}\right)^{2}-8\left(\frac{4}{3}\right)+4 \\
& =\frac{48}{9}-\frac{32}{3}+4 \\
& =-\frac{4}{3} \mathrm{~ms}^{-1}
\end{aligned}
$$

So for $0<t \leq 2$, $V_{\text {max }}=\frac{4}{3} \mathrm{mi}^{-1}$
but @t $00, v=4 \cdots f_{0} 0 \leq t \leq 2, V_{\text {max }}=4 \mathrm{mi}^{-1}$
(5)

$$
\begin{aligned}
a & =k t \\
a=\frac{d v}{d t} & =h t \\
v & =\int k t d t \\
v & =\frac{k t^{2}}{2}+c
\end{aligned}
$$

when $t=0 \quad V=4 \quad-4=c$

$$
\therefore V=\frac{k t^{2}}{2}+4
$$

when $t=10 \quad V=12 \quad 12=50 k+4$

$$
\begin{aligned}
& k=\frac{8}{50}=\frac{4}{25} \\
& \therefore V=\frac{2}{25} t^{2}+4 \\
& x=\int \frac{2}{25} t^{2}+4 d t \\
& x=\frac{2}{75} t^{3}+4 t+c \\
& t=5 \quad x_{5}=\frac{2}{75}(5)^{3}+4(5)+c=23 \frac{3}{3}+c \\
& t=10 x_{10}=\frac{2}{75}(100)^{3}+4(100)+c=26862546 \frac{2}{3}+c \\
& x_{10}-x_{1}=433 \text { metros. }
\end{aligned}
$$

(7) $s=t+\sin 2 t$
(a) $\quad V=\frac{d s}{d t}=1+2 \cos 2 t$
(b)

$$
\begin{aligned}
& a=f=-4 \sin 2 t \\
& f^{2}=(-45 \sin 2 t)^{2} \\
& f^{2}=16 \sin ^{2} 2 t \\
& f^{2}=16\left(1-\cos ^{2} 2 t\right)
\end{aligned}
$$

From(a) $\frac{v-1}{2}=\cos 2 t$

$$
f^{2}=16\left(1-\frac{(v-1)^{2}}{4}\right)
$$

$F^{2}=16-4(v-1)^{2}$ As requieal

