шјес
cbac

GCSE MARKING SCHEME

SUMMER 2017

GCSE (NEW)
MATHEMATICS NUMERACY - UNIT 1 (HIGHER) 3310U50-1

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

Writing		

3(a) (Length) 6 (m) AND (width) 3 (m)	B2	Accept in either order in the answer space B1 for any 1 of the following: - sight of $18 \div 3$ - sight of $18 \div 6$ - either length or width correct (any order) - answers $12(\mathrm{~m})$ and 6 (m) (any order) - $1 \mathrm{x}+2 \mathrm{x}+1 \mathrm{x}+2 \mathrm{x}=18$ or similar
3(b) $x+3+x+3+x+x=16$ or $x+3+x=8$ or equivalent $4 \mathrm{x}+6=16$ or $4 \mathrm{x}=16-6$ or $4 \mathrm{x}=10$ or $2 x+3=8$ or equivalent (Length) 5.5 (m) and (width, x) 2.5 (m)	M1 m1 A1	Accept any variable for ' x ' Depends on the previous M1 This m1 implies the previous M1 CAO Needs to be in the correct order in the answer space, or clearly labelled Alternative method to work with $y-3$ and y leading to $y=5.5$ If no marks, allow SC1 for answers of $5.5(\mathrm{~m})$ and $2.5(\mathrm{~m})$ if no equation given or if 'their equation' not used to elicit these answers, OR SC1 for answers of $9.5(\mathrm{~m})$ and $6.5(\mathrm{~m})$ from sight of $x+x+3=16$
4(a) 8	B1	
4.(b) States or implies 'No' with a reason, e.g. 'all Josef's patterns have an odd number of squares', 'same number on each branch from the one top square makes it an odd number', 'one square left over', 'one square short', 'one more needed', 'the arms would be unequal (in length)', '22 is even', 'P10 is (made using) 21 (squares), P11 is (made using) 23 (squares)', 'he would only be able to make a pattern with 21 squares'	E1	Do not accept 'No' with, e.g. 'too many squares', '22 is not part of the pattern', 'it is unequal'
4(c) P4	B2	Allow $\mathrm{P}=4$ B1 for sight of $10 \div 0.5$ or 20 (small square edges) or shows 5 squares on each side (stated or diagram in the answer space for (c)) B0 for P20 unless sight of $10 \div 0.5$ (which is awarded B1)

\begin{tabular}{|c|c|c|}
\hline 5(a) 45 (seconds) \& B1 \& \\
\hline 5(b) 30 \& B1 \& \\
\hline \begin{tabular}{l}
\[
\text { 5(c) } 0.9(0) \times 70
\] \\
\(=63\) (passengers) \\
(In 60 seconds) 65 (passengers left) \\
OR \\
63 passengers within (58 or) 59 seconds OR \\
63 (passengers) in less than 60 seconds \\
Conclusion that the target was met
\end{tabular} \& M1
A1
B1

E1 \& | Ignore incorrect units |
| :--- |
| Check the diagram for indication, provided values are written |
| FT 'their 63' provided M1 previously awarded |
| Depends on M1, B1 previously awarded |
| Alternative: |
| By 1 minute, 65 passengers left B1 |
| (100×) 65/70 |
| $0.92(8 \ldots)$ or 0.93 or $92(8 \%)$ or $93(\%)$ |
| Conclusion that target met |
| ${ }_{\text {A1 }}$ |
| (Depends on M1, B1) |
| Alternative: |
| For candidates clearly considering the number of passengers left on the plane, must be evidence of this before awarding marks ($0.1 \times 70=$) |
| 7 (passengers left on the plane) B1 |
| (After 1 minute) 70-65 M1 |
| 5 (passengers) A1 |
| Conclusion that target met |
| (Depends on M1, B1) |

\hline 6(a) April \& B1 \&

\hline 6(b) January \& B1 \&

\hline 6(c)(i) January and February \& B1 \& In either order

\hline 6 (c)(ii) 43 \& B1 \&

\hline $$
\begin{array}{lr}
\text { 6(d) } & \text { FALSE } \\
& \text { TRUE } \\
& \text { FALSE } \\
& \text { FALSE }
\end{array}
$$ \& B2 \& B1 for any 3 correct responses

\hline
\end{tabular}

$7(\mathrm{a}) 8 \times 10^{-5}$	B1	
7 (b)(i) $\quad 30$ (pieces of card)	B2	If working is shown, it needs to be correct for the award of B2 Do not accept final answer of 30 mm for B2

\begin{tabular}{|c|c|c|}
\hline \& M1
M1

A1

A1 \& | May be implied. |
| :--- |
| This M1 implies the previous M1 |
| CAO. May not be seen. |
| FT provided at least M1 awarded and rounding required |
| A correct answer of 8 (with no errors) from M1 awarded gains all 4 marks |
| Alternative methods: |
| M1 for n painters take 1 hour to paint $10 \mathrm{n}\left(\mathrm{m}^{2}\right)$ |
| M1 for 600/8 |
| A1 for 75 (m^{2} / hour) |
| A1 for 8 (painters) |
| A correct answer of 8 (with no errors) from M1 awarded gains all 4 marks |
| OR |
| M2 for $5 \times \frac{10}{8} \times \frac{600}{500}$ |
| This is for the correct use of the 5 with all 4 numbers, 10, 8, 600 and 500 |
| M1 for correct use of the 5 with any 2 of the numbers |
| A1 for 7.5 or equivalent. CAO. May not be seen A1 for 8 (painters) |
| FT provided at least M1 awarded and rounding required |
| A correct answer of 8 (with no errors) from M1 awarded gains all 4 marks |

\hline | 8(b) Valid assumption e.g. |
| :--- |
| 'All painters work at the same rate (or speed)', |
| 'They all paint $10\left(\mathrm{~m}^{2}\right)$ in an hour' |
| 'Each painter is equally efficient' | \& B1 \& | Do not accept e.g. |
| :--- |
| 'The rooms (or walls) are the same shape', |
| 'They had the same breaks' |
| 'They don't have breaks' |
| 'Each painter works at a constant speed' |

\hline
\end{tabular}

9(a)(i) $4 \times 1+4 \times 4+4 \times 3+8 \times 0 \cdot 5$ $=36$	M1 A1	Allow M1 for any 3 correct products CAO
9(a)(ii)		FT for all marks from their answer to (a)(i) provided their work in (a)(ii) is of equivalent difficulty. If FT results in the median being at one the group boundaries, then award a possible S1 only if correctly found

10(a)(i) Tangent drawn at $\mathrm{t}=50$ Idea of increase in speed \div increase in time Reasonable approximation for the gradient	$\begin{aligned} & \text { S1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Ignore signs for M1 only Allow 1 slip in reading the scale for M1 only Only award if S1 awarded Accept a fraction not in its lowest terms Mark final answer
$\begin{aligned} & \text { 10(a)(ii) } \\ & \text { e.g. } 10 x=2 \cdot 444 \ldots \text { and } 100 x=24 \cdot 444 \ldots \\ & \text { and attempt to subtract } \\ & 22 / 90 \text { (ISW) } \end{aligned}$	M1 A1	$O R x=0 \cdot 2444 \ldots$ and $10 x=2 \cdot 444 \ldots$ M1A0 for 2-2/9 $100 x$ - x leads to 242/990 (which simplifies to 22/90). ISW
10(b)(i) Sight of speeds of $10,15,25,30$ Split into at least 4 areas and attempt to sum (Area $=)^{1 / 2 \times 20 \times(10+30+2(15+25+30)) ~}$ $\text { = } 1800(\mathrm{~m})$	B1 M1 M1 A1	Or equivalent. (Areas of $250,400,550,600$) (If 8 areas used, areas of $110,135, \approx 160, \approx 210$, 270, 295, 300, 300) Allow 1 slip in reading the scale CAO. A1 for an answer of $\approx 1780(\mathrm{~m})$ if 8 areas used. CAO.
$\begin{aligned} &\text { 10(b)(ii) (Total distance }=) \\ & 1800+30 \times(38 \text { to } 40 \text { inclusive) } \\ &=2940 \text { to } 3000(\mathrm{~m}) \\ &\text { (Average speed }=) \text { total distance } \div 120 \\ &=24.5 \text { to } 25(\mathrm{~m} / \mathrm{s}) \end{aligned}$	M1 A1 M1 A1	FT 'their 1800' FT 'their total distance'
$\begin{aligned} & 11(\mathrm{a}) \\ & \begin{array}{r} 1 / 3 \times \pi \times 5^{2} \times 12 \text { and } \pi \times 3^{2} \times 4 \\ \text { (Vol remaining }=)^{1 / 3} \times \pi \times 5^{2} \times 12-\pi \times 3^{2} \times 4 \\ \\ =100 \pi-36 \pi \quad\left(=64 \pi \mathrm{~cm}^{3}\right) \end{array} \end{aligned}$	$\begin{aligned} & \mathrm{B} 2 \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow the use of numerical values of pi for the B2 and M1 marks B1 for either of these expressions FT use of $1 / 3 \times \pi \times 10^{2} \times 12$ Convincing. Must be in terms of π.
$\begin{aligned} & 11(\mathrm{~b})\left(\text { Slant length }{ }^{2}=\right) 12^{2}+5^{2} \\ & \text { Slant length }=169 \text { OR }(\text { Slant length }=) \sqrt{ } 169 \\ & \text { (Slant length }=) 13(\mathrm{~cm}) \\ & \text { (Surface area }=) \pi \times 5^{2}-\pi \times 3^{2}+\pi \times 5 \times 13 \\ & =81 \pi\left(\mathrm{~cm}^{2}\right) \end{aligned}$	M1 A1 A1 M2 A1	May be unsupported Allow the use of numerical values of pi FT 'their 13' provided Pythagoras attempted M1 for the appropriate addition/subtraction of 2 correct terms CAO. Must be in terms of π.

